The current state-of-the-art climate models when combined together suggest that the anthropogenic weakening of the Atlantic Meridional Overturning Circulation (AMOC) has already begun since the mid-1980s. However, continuous direct observational records during the past two decades have shown remarkable resilience of the AMOC. To shed light on this apparent contradiction, here we attempt to attribute the interdecadal variation of the historical AMOC to the anthropogenic and natural signals, by analyzing multiple climate and surface-forced ocean model simulations together with direct observational data.
View Article and Find Full Text PDFThe potential weakening of the Atlantic Meridional Overturning Circulation (AMOC) in response to anthropogenic forcing, suggested by climate models, is at the forefront of scientific debate. A key AMOC component, the Florida Current (FC), has been measured using submarine cables between Florida and the Bahamas at 27°N nearly continuously since 1982. A decrease in the FC strength could be indicative of the AMOC weakening.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2023
Continuous measurements of the Atlantic meridional overturning circulation (AMOC) and meridional ocean heat transport at 26.5° N began in April 2004 and are currently available through December 2020. Approximately 90% of the total meridional heat transport (MHT) at 26.
View Article and Find Full Text PDFThe system of oceanic flows constituting the Atlantic Meridional Overturning Circulation (AMOC) moves heat and other properties to the subpolar North Atlantic, controlling regional climate, weather, sea levels, and ecosystems. Climate models suggest a potential AMOC slowdown towards the end of this century due to anthropogenic forcing, accelerating coastal sea level rise along the western boundary and dramatically increasing flood risk. While direct observations of the AMOC are still too short to infer long-term trends, we show here that the AMOC-induced changes in gyre-scale heat content, superimposed on the global mean sea level rise, are already influencing the frequency of floods along the United States southeastern seaboard.
View Article and Find Full Text PDFThorough study of composition and fluorescence properties of a commercial reagent of active equine NAD-dependent alcohol dehydrogenase expressed and purified from has been carried out. Several experimental methods: spectral- and time-resolved two-photon excited fluorescence, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, fast protein liquid chromatography, and mass spectrometry were used for analysis. The reagent under study was found to contain also a number of natural fluorophores: free NAD(P)H, NADH-alcohol dehydrogenase, NADPH-isocitrate dehydrogenase, and pyridoxal 5-phosphate-serine hydroxymethyltransferase complexes.
View Article and Find Full Text PDFDetailed descriptions of microbial communities have lagged far behind physical and chemical measurements in the marine environment. Here, we present 971 globally distributed surface ocean metagenomes collected at high spatio-temporal resolution. Our low-cost metagenomic sequencing protocol produced 3.
View Article and Find Full Text PDFWe present genome-wide data from 40 individuals dating to c.16,900 to 550 years ago in northeast Asia. We describe hitherto unknown gene flow and admixture events in the region, revealing a complex population history.
View Article and Find Full Text PDFFollowing the onset of the strong 2014-2016 El Niño, a decade-long increase of the basin-wide sea level and heat content in the subtropical southern Indian Ocean (SIO) in 2004-2013 ended with an unprecedented drop, which quickly recovered during the weak 2017-2018 La Niña. Here, we show that the 2014-2016 El Niño contributed to the observed cooling through an unusual combination of both the reduced heat advection from the Pacific (dominant in the eastern SIO) and the basin-wide cyclonic wind anomaly that led to shoaling of isotherms (dominant in the western SIO). The ensuing recovery was mainly forced by an anticyclonic wind anomaly associated with stronger trade winds that caused deepening of isotherms and upper-ocean warming, effectively suppressing the 2014-2016 cooling signal propagating from the eastern boundary.
View Article and Find Full Text PDFArchaeogenomic studies have largely elucidated human population history in West Eurasia during the Stone Age. However, despite being a broad geographical region of significant cultural and linguistic diversity, little is known about the population history in North Asia. We present complete mitochondrial genome sequences together with stable isotope data for 41 serially sampled ancient individuals from North Asia, dated between c.
View Article and Find Full Text PDFGeophys Res Lett
January 2017
The persistent energy imbalance at the top of the atmosphere, inferred from satellite measurements, indicates that the Earth's climate system continues to accumulate excess heat. As only sparse and irregular measurements of ocean heat below 2000 m depth exist, one of the most challenging questions in global climate change studies is whether the excess heat has already penetrated into the deep ocean. Here we perform a comprehensive analysis of satellite and in situ measurements to report that a significant deep-ocean warming occurred in the subtropical South Pacific Ocean over the past decade (2005-2014).
View Article and Find Full Text PDFThe Salinity Processes in the Upper-ocean Regional Study (SPURS) aims to understand the patterns and variability of sea surface salinity. In order to capture the wide range of spatial and temporal scales associated with processes controlling salinity in the upper ocean, research vessels delivered autonomous instruments to remote sites, one in the North Atlantic and one in the Eastern Pacific. Instruments sampled for one complete annual cycle at each of these two sites, which are subject to contrasting atmospheric forcing.
View Article and Find Full Text PDF