A super-secondary structure (SSS) is a spatially unique ensemble of secondary structural elements that determine the three-dimensional shape of a protein and its function, rendering SSSs attractive as folding cores. Understanding known types of SSSs is important for developing a deeper understanding of the mechanisms of protein folding. Here, we propose a universal PSSNet machine-learning method for SSS recognition and segmentation.
View Article and Find Full Text PDFMass spectrometric profiling provides information on the protein and metabolic composition of biological samples. However, the weak efficiency of computational algorithms in correlating tandem spectra to molecular components (proteins and metabolites) dramatically limits the use of "omics" profiling for the classification of nosologies. The development of machine learning methods for the intelligent analysis of raw mass spectrometric (HPLC-MS/MS) measurements without involving the stages of preprocessing and data identification seems promising.
View Article and Find Full Text PDFThe association between cancer risk and schizophrenia is widely debated. Despite many epidemiological studies, there is still no strong evidence regarding the molecular basis for the comorbidity between these two pathological conditions. The vast majority of assays have been performed using clinical records of schizophrenic patients or those undergoing cancer treatment and monitored for sufficient time to find shared features between the considered conditions.
View Article and Find Full Text PDF