Proc Natl Acad Sci U S A
November 2024
Many prokaryotic and eukaryotic cells metabolize glucose to organism-specific by-products instead of fully oxidizing it to carbon dioxide and water-a phenomenon referred to as the Warburg Effect. The benefit to a cell is not fully understood, given that partial metabolism of glucose yields an order of magnitude less adenosine triphosphate (ATP) per molecule of glucose than complete oxidation. Here, we test a previously formulated hypothesis that the benefit of the Warburg Effect is to increase ATP production rate by switching from high-yielding respiration to faster glycolysis when excess glucose is available and respiration rate becomes limited by proteome occupancy.
View Article and Find Full Text PDFMitochondrial membrane potential (ΔΨm) is one of the key parameters controlling cellular bioenergetics. Investigation of the role of ΔΨm in live cells is complicated by a lack of tools for its direct manipulation without off-target effects. Here, we adopted the uncoupling protein UCP1 from brown adipocytes as a genetically encoded tool for direct manipulation of ΔΨm.
View Article and Find Full Text PDFOver the past few years, we have seen an explosion of novel genetically encoded tools for measuring and manipulating metabolism in live cells and animals. Here, we will review the genetically encoded tools that are available, describe how these tools can be used and outline areas where future development is needed in this fast-paced field. We will focus on tools for direct measurement and manipulation of metabolites.
View Article and Find Full Text PDFCellular respiration is essential for multiple bacterial pathogens and a validated antibiotic target. In addition to driving oxidative phosphorylation, bacterial respiration has a variety of ancillary functions that obscure its contribution to pathogenesis. We find here that the intracellular pathogen encodes two respiratory pathways which are partially functionally redundant and indispensable for pathogenesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2021
Cells are the basic units of all living matter which harness the flow of energy to drive the processes of life. While the biochemical networks involved in energy transduction are well-characterized, the energetic costs and constraints for specific cellular processes remain largely unknown. In particular, what are the energy budgets of cells? What are the constraints and limits energy flows impose on cellular processes? Do cells operate near these limits, and if so how do energetic constraints impact cellular functions? Physics has provided many tools to study nonequilibrium systems and to define physical limits, but applying these tools to cell biology remains a challenge.
View Article and Find Full Text PDFMitochondrial dysfunction is associated with activation of the integrated stress response (ISR) but the underlying triggers remain unclear. We systematically combined acute mitochondrial inhibitors with genetic tools for compartment-specific NADH oxidation to trace mechanisms linking different forms of mitochondrial dysfunction to the ISR in proliferating mouse myoblasts and in differentiated myotubes. In myoblasts, we find that impaired NADH oxidation upon electron transport chain (ETC) inhibition depletes asparagine, activating the ISR via the eIF2α kinase GCN2.
View Article and Find Full Text PDFEnvironmental stress can induce adult reproductive diapause, a state of developmental arrest that temporarily suspends reproduction. Deficiency for C. elegans Piwi protein PRG-1 results in strains that reproduce for many generations but then become sterile.
View Article and Find Full Text PDFThe state of palladium and copper on the surface of the PdCl₂-CuCl₂/γ-Al₂O₃ nanocatalyst for the low-temperature oxidation of CO by molecular oxygen was studied by various spectroscopic techniques. Using X-ray absorption spectroscopy (XAS), powder X-ray diffraction (XRD), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), freshly prepared samples of the catalyst were studied. The same samples were also evaluated after interaction with CO, O₂, and H₂O vapor in various combinations.
View Article and Find Full Text PDFInflammaging plays an important role in most age-related diseases. However, the mechanism of inflammaging is largely unknown, and therapeutic control of inflammaging is challenging. Human alpha-1 antitrypsin (hAAT) has immune-regulatory, anti-inflammatory, and cytoprotective properties as demonstrated in several disease models including type 1 diabetes, arthritis, lupus, osteoporosis, and stroke.
View Article and Find Full Text PDFThe redox coenzymes NADH and NADPH are broadly required for energy metabolism, biosynthesis and detoxification. Despite detailed knowledge of specific enzymes and pathways that utilize these coenzymes, a holistic understanding of the regulation and compartmentalization of NADH- and NADPH-dependent pathways is lacking, partly because of a lack of tools with which to investigate these processes in living cells. We have previously reported the use of the naturally occurring Lactobacillus brevis HO-forming NADH oxidase (LbNOX) as a genetic tool for manipulation of the NAD/NADH ratio in human cells.
View Article and Find Full Text PDFObjective: To define the mechanism responsible for fatigue, lethargy, and weakness in 2 cousins who had a normal muscle biopsy.
Methods: Exome sequencing, long-range PCR, and Sanger sequencing to identify the pathogenic mutation. Functional analysis in the patient fibroblasts included oxygen consumption measurements, extracellular acidification studies, Western blotting, and calcium imaging, followed by overexpression of the wild-type protein.
Cyclo-oligo-(1→6)-β-D-glucosamines functionalized with hydrophobic tails are reported as a new class of transmembrane ion-transport system. These macrocycles with hydrophilic cavities were introduced as an alternative to cyclodextrins, which are supramolecular systems with hydrophobic cavities. The transport activities of these glycoconjugates were manipulated by altering the oligomericity of the macrocycles, as well as the length and number of attached tails.
View Article and Find Full Text PDFTriptolide is a key component of the traditional Chinese medicinal plant Thunder God Vine and has potent anticancer and immunosuppressive activities. It is an irreversible inhibitor of eukaryotic transcription through covalent modification of XPB, a subunit of the general transcription factor TFIIH. Cys342 of XPB was identified as the residue that undergoes covalent modification by the 12,13-epoxide group of triptolide.
View Article and Find Full Text PDFUnimolecular ion channels were designed by functionalization of a new type of cyclic oligosaccharides, cyclo-oligo-(1 → 6)-β-d-glucosamines, with pentabutylene glycol chains. Their ion transporting activity was tuned by varying oligomericity. A halide selectivity sequence, Cl(-) > Br(-) > I(-) was observed.
View Article and Find Full Text PDFA family of fifteen glycoclusters based on a cyclic oligo-(1→6)-β-D-glucosamine core has been designed as potential inhibitors of the bacterial lectin LecA with various valencies (from 2 to 4) and linkers. Evaluation of their binding properties towards LecA has been performed by a combination of hemagglutination inhibition assays (HIA), enzyme-linked lectin assays (ELLA), and isothermal titration microcalorimetry (ITC). Divalent ligands displayed dissociation constants in the sub-micromolar range and tetravalent ligands displayed low nanomolar affinities for this lectin.
View Article and Find Full Text PDFThe effect of reaction conditions, the nature of a leaving group, and a substituent at C-2 in the glycosylating monosaccharide on the stereochemical outcome of cyclization of linear tetra-β-(1→6)-d-glucosamines and some 'mixed' tetrasaccharides comprising glucose and glucosamine residues has been examined. Toluene and nitrile solvents improved the β-stereoselectivity of cyclization, however, the overall efficiency of the formation of cyclic products in these solvents was lower than that in dichloromethane. The use of bromide or pentenyl glycoside as leaving groups instead of the thioglycoside did not increase the β-stereoselectivity.
View Article and Find Full Text PDFBioorg Med Chem
March 2012
Identification and validation of protein targets of bioactive small molecules is an important problem in chemical biology and drug discovery. Currently, no single method is satisfactory for this task. Here, we provide an overview of common methods for target identification and validation that historically were most successful.
View Article and Find Full Text PDFThe conformational behavior of a series of linear and cyclic oligo-(1→6)-β-D-glucosamines and their N-acetylated derivatives, which are related to fragments of natural poly-N-acetylglucosamine, was studied by theoretical molecular modeling and experimental determination of transglycosidic vicinal coupling constants (3)J(C,H) and (3)J(H,H). Molecular dynamics simulations were performed under several types of conditions varying in the consideration of ionization of amino groups, solvent effect, and temperature. Neural network clustering and asphericity calculations were performed on the basis of molecular dynamics data.
View Article and Find Full Text PDFTriptolide (1) is a structurally unique diterpene triepoxide isolated from a traditional Chinese medicinal plant with anti-inflammatory, immunosuppressive, contraceptive and antitumor activities. Its molecular mechanism of action, however, has remained largely elusive to date. We report that triptolide covalently binds to human XPB (also known as ERCC3), a subunit of the transcription factor TFIIH, and inhibits its DNA-dependent ATPase activity, which leads to the inhibition of RNA polymerase II-mediated transcription and likely nucleotide excision repair.
View Article and Find Full Text PDFIn this issue of Molecular Cell, Ahearn et al. (2011) identified FKBP12 as a novel regulator of Ras signaling through its modulation of depalmitoylation of H-Ras and its recycling from plasma membrane to the Golgi.
View Article and Find Full Text PDFGenetically encoded reporters based on fluorescence resonance energy transfer (FRET) are being developed for analyzing spatiotemporal dynamics of kinase activities in living cells, as the activities of this class of enzymes are often dynamically regulated and spatially compartmentalized within specific signaling context. Here we describe a general modular design and engineering strategies for the development of activity reporters for kinases of interest, using A-kinase activity reporter (AKAR) as an illustrative example. Discussed here are basic structure of such reporters, design considerations, reporter gene construction, cellular and in vitro characterization.
View Article and Find Full Text PDF