Drugs such as angiotensin-converting enzyme inhibitors and angiotensin receptor blockers can improve muscle function and exercise capacity, as well as preventing, attenuating or reversing age-related losses in muscle mass, however, the exact mechanisms by which these drugs affect muscle cells, are not yet fully elucidated. Moreover, the potential epigenetic alterations induced in skeletal muscle tissue are also largely unexplored. The aim of this study was to evaluate if enalapril or losartan can change the physical performance and epigenetic profile of skeletal muscle in spontaneously hypertensive rats (SHRs).
View Article and Find Full Text PDFThe objective of this study is to assess the performance of an innovative AI-powered tool for sex determination using panoramic radiographs (PR) and to explore factors affecting the performance of the convolutional neural network (CNN). The study involved 207,946 panoramic dental X-rays and their corresponding reports from 15 clinical centers in São Paulo, Brazil. The PRs were acquired with four different devices, and 58% of the patients were female.
View Article and Find Full Text PDFThe apicomplexan parasite is the causative agent of toxoplasmosis, a global disease that significantly impacts human health. The clinical manifestations are mainly observed in immunocompromised patients, including ocular damage and neuronal alterations leading to psychiatric disorders. The congenital infection leads to miscarriage or severe alterations in the development of newborns.
View Article and Find Full Text PDFCommunity composition and seasonal variation of sporulation of arbuscular mycorrhizal fungi (AMF) have been studied in soils from many ecosystems including subtropical forest. Yet, AMF community composition has been surveyed only from the mineral soil but not from the litter layer and the root mat, and long-term variation in sporulation is not fully understood. We sampled a 75-m plot from a subtropical forest to determine AMF community composition in the following habitats: the litter layer, the root mat, and the mineral soil.
View Article and Find Full Text PDFMicromachines (Basel)
April 2021
Colorectal cancer is the second leading cause of cancer death worldwide. Significant advances in the molecular mechanisms underlying colorectal cancer have been made; however, the clinical approval of new drugs faces many challenges. Drug discovery is a lengthy process causing a rapid increase in global health care costs.
View Article and Find Full Text PDFThis report describes the unexpected formation of root-like structures following the avulsion of immature permanent teeth without replantation. A 6-year-old female patient had avulsed the four permanent mandibular incisors and the two deciduous mandibular canines. The patient was seen in an emergency healthcare unit but did not receive specialized treatment for tooth replantation.
View Article and Find Full Text PDFThe rapid and sensitive detection of specific nucleic acid sequences at the point-of-care (PoC) is becoming increasingly in demand for a variety of emergent biomedical applications ranging from infectious disease diagnostics to the screening of antimicrobial resistance. To meet such demand, considerable efforts have been invested towards the development of portable and integrated analytical devices combining microfluidics with miniaturized signal transducers. Here, we demonstrate the combination of rolling circle amplification (RCA)-based nucleic acid amplification with an on-chip size-selective trapping of amplicons on silica beads (~8 nL capture chamber) coupled with a thin-film photodiode (200 × 200 µm area) fluorescence readout.
View Article and Find Full Text PDFPortable, rapid, cost effective and simple analytical tools are in increasing demand to facilitate the routine monitoring of target chemical/biological compounds at the point-of-need. Such devices are highly relevant within the context of food safety, particularly concerning the screening of highly toxic and strictly regulated mycotoxins. To achieve ultrarapid detection of mycotoxins, namely aflatoxin B1, ochratoxin A and deoxynivalenol, at the point-of-need, a novel multiplexed bead-based microfluidic competitive immunosensor, coupled with an array of a-Si:H thin-film photodiodes for integrated fluorescence signal acquisition, is reported.
View Article and Find Full Text PDFRev Bras Reumatol Engl Ed
September 2019
Continuous increases in the rates of tumor diseases have highlighted the need for identification of novel and inexpensive antitumor agents from natural sources. In this study, we investigated the effects of enriched fraction from hydroalcoholic Brazilian red propolis extract against Hep-2 cancer cell line. Initially 201 fractions were arranged in 12 groups according to their chromatographic characteristics (A-L).
View Article and Find Full Text PDF[Purpose] This study aimed to assess the exercise capacity and muscle strength in elderly people using drugs for angiotensin-II blockage. [Subjects and Methods] Four hundred and seven older adults were recruited for this study. Data about comorbidities and medication use were recorded and the individuals were divided into three groups: control group- elderly people with normal exercise capacity (n=235); angiotensin-converting enzyme inhibitor group - individuals using angiotensin-converting enzyme inhibitors (n=140); and angiotensin-II receptor blocker group- patients using angiotensin-II receptor blockers (n= 32).
View Article and Find Full Text PDFObjective: This study evaluated the effects of growth hormone (GH) on morphology and myogenic regulatory factors (MRF) gene expression in skeletal muscle of rats with ascending aortic stenosis (AAS) induced chronic heart failure.
Design: Male 90-100g Wistar rats were subjected to thoracotomy. AAS was created by placing a stainless-steel clip on the ascending aorta.
The histopathological counterpart of white matter hyperintensities is a matter of debate. Methodological and ethical limitations have prevented this question to be elucidated. We want to introduce a protocol applying state-of-the-art methods in order to solve fundamental questions regarding the neuroimaging-neuropathological uncertainties comprising the most common white matter hyperintensities [WMHs] seen in aging.
View Article and Find Full Text PDFIn spite of considerable technical advance in MRI techniques, the optical resolution of these methods are still limited. Consequently, the delineation of cytoarchitectonic fields based on probabilistic maps and brain volume changes, as well as small-scale changes seen in MRI scans need to be verified by neuronanatomical/neuropathological diagnostic tools. To attend the current interdisciplinary needs of the scientific community, brain banks have to broaden their scope in order to provide high quality tissue suitable for neuroimaging- neuropathology/anatomy correlation studies.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
July 2005
Purine nucleoside phosphorylase (PNP) is a key enzyme in the purine-salvage pathway, which allows cells to utilize preformed bases and nucleosides in order to synthesize nucleotides. PNP is specific for purine nucleosides in the beta-configuration and exhibits a strong preference for purines containing a 6-keto group and ribosyl-containing nucleosides relative to the corresponding analogues. PNP was crystallized in complex with ligands and data collection was performed using synchrotron radiation.
View Article and Find Full Text PDFHuman purine nucleoside phosphorylase (PNP) is a ubiquitous enzyme which plays a key role in the purine salvage pathway, and PNP deficiency in humans leads to an impairment of T-cell function, usually with no apparent effect on B-cell function. PNP is highly specific for 6-oxopurine nucleosides and exhibits negligible activity for 6-aminopurine nucleosides. The catalytic efficiency for inosine is 350,000-fold greater than for adenosine.
View Article and Find Full Text PDFPurine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. PNP is a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. More recently, the 3-D structure of human PNP has been refined to 2.
View Article and Find Full Text PDFDocking simulations have been used to assess protein complexes with some success. Small angle X-ray scattering (SAXS) is a well-established technique to investigate protein spatial configuration. This work describes the integration of geometric docking with SAXS to investigate the quaternary structure of recombinant human purine nucleoside phosphorylase (PNP).
View Article and Find Full Text PDFIn human, purine nucleoside phosphorylase (HsPNP) is responsible for degradation of deoxyguanosine and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. This work reports the first crystallographic study of human PNP complexed with acyclovir (HsPNP:Acy).
View Article and Find Full Text PDFPurine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. In human, PNP is the only route for degradation of deoxyguanosine and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and its low resolution structure has been used for drug design.
View Article and Find Full Text PDF