Publications by authors named "Denis Prim"

Traumatic brain injuries (TBI) are typically acquired when a sudden violent event causes damage to the brain tissue. A high percentage (70-85%) of all TBI patients are suffering from mild TBI (mTBI), which is often difficult to detect and diagnose with standard imaging tools (MRI, CT scan) due to the absence of significant lesions and specific symptoms. Recent studies suggest that a screening test based on the measurement of a protein biomarker panel directly from a patient's blood can facilitate mTBI diagnosis.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is caused by a wide range of physical events and can induce an even larger spectrum of short- to long-term pathophysiologies. Neuroscientists have relied on animal models to understand the relationship between mechanical damages and functional alterations of neural cells. These and animal-based models represent important approaches to mimic traumas on whole brains or organized brain structures but are not fully representative of pathologies occurring after traumas on human brain parenchyma.

View Article and Find Full Text PDF

Immobilization of peptides to a solid surface is frequently an important first step before they can be probed with a variety of biological samples in a heterogeneous assay format for research and clinical diagnostic purposes. Peptides can be derivatized in many ways to subsequently covalently attach them to an activated solid surface such as, for instance, epoxy-functionalized glass slides. Here, we describe a clean, efficient, and reproducible fabrication process based on catalyst-free click chemistry compatible with the construction of low- to high-density peptide microarrays.

View Article and Find Full Text PDF

Many therapeutic drugs require monitoring of their concentration in blood followed by dose adjustments in order to ensure efficacy while minimizing adverse effects. It would be highly desirable to perform such measurements rapidly and with reduced sample volumes to support point-of-care testing. Here, we demonstrate that the concentration of small therapeutics can be determined in whole blood within paper-like membranes using Fluorescence Polarization Immunoassay (FPIA).

View Article and Find Full Text PDF

Globally, 70 million people are annually affected by TBI. A significant proportion of all TBI cases are actually mild TBI (concussion, 70-85%), which is considerably more difficult to diagnose due to the absence of apparent symptoms. Current clinical practice of diagnosing mTBI largely resides on the patients' history, clinical aspects, and CT and MRI neuroimaging observations.

View Article and Find Full Text PDF

Numerous projects and industrial and academic collaborations benefit from state-of-the-art facilities and expertise in analytical chemistry available at the Swiss Universities of Applied Sciences. This review summarizes areas of expertise in analytical sciences at the University of Applied Sciences and Arts Northwestern Switzerland (FHNW), the University of Applied Sciences and Arts Western Switzerland (HES-SO), and the Zurich University of Applied Sciences (ZHAW). We briefly discuss selected projects in different fields of analytical sciences.

View Article and Find Full Text PDF

Background: Immunosuppressive drugs (ISD) are an essential tool in the treatment of transplant rejection and immune-mediated diseases. Therapeutic drug monitoring (TDM) for determination of ISD concentrations in biological samples is an important instrument for dose personalization for improving efficacy while reducing side effects. While currently ISD concentration measurements are performed at specialized, centralized facilities, making the process complex and laborious for the patient, various innovative technical solutions have recently been proposed for bringing TDM to the point-of-care (POC).

View Article and Find Full Text PDF

Immobilization of peptides to a solid surface is frequently an important first step before they can be probed with a variety of biological samples in a heterogeneous assay format for research and clinical diagnostic purposes. Peptides can be derivatized in many ways to subsequently covalently attach them to an activated solid surface such as epoxy-functionalized glass slides. Here, we describe a clean, efficient, and reproducible fabrication process based on catalyst-free click chemistry compatible with the construction of low- to high-density peptide microarrays.

View Article and Find Full Text PDF

Strawberry fruits are highly valued for their taste and nutritional value. However, results describing the bioaccessibility and intestinal absorption of phenolic compounds from strawberries are still scarce. In our study, a combined in vitro digestion/Caco-2 absorption model was used to mimic physiological conditions in the gastrointestinal track and identify compounds transported across intestinal epithelium.

View Article and Find Full Text PDF

Several azide-derivatized and fluorescently-labeled peptides were immobilized on azadibenzocyclooctyne (ADIBO)-activated slide surfaces via a strain-promoted alkyne-azide cycloaddition (SPAAC) reaction revealing excellent immobilization kinetics, good spot homogeneities and reproducible fluorescence signal intensities. A myc-peptide micro-array immunoassay showed an antibody limit-of-detection (LOD) superior to a microtiter plate-based ELISA. Bovine serum albumin (BSA) and dextran covalently attached via "click" chemistry more efficiently reduced non-specific binding (NSB) of fluorescently-labeled IgG to the microarray surface in comparison to immobilized hexanoic acid and various types of polyethylene glycol (PEG) derivatives.

View Article and Find Full Text PDF

Peptide and protein microarrays provide a multiplex approach to identification and quantification of protein-protein interactions (PPI), useful to study for instance antigen-antibody properties. Multivariate serology assays detecting multiple tumor auto-antibodies (TAA) is an emerging class of blood tests for cancer detection. Here we describe the efficient coupling of peptide baits derived from the BRCA1-associated RING domain protein 1 (BARD1) to a solid surface and detection of a commercially available anti-BARD1 antibody with this newly designed peptide microarray.

View Article and Find Full Text PDF

The biological properties of a protein critically depend on its conformation, which can vary as a result of changes in conditions such as pH or following the addition of various substances. Being able to reliably assess the quality of protein structures under various conditions is therefore of crucial importance. Infrared (IR) spectroscopy of the Amide I band of proteins is a powerful method for the determination of protein conformations and further allows the analysis of continuously flowing solutions of the target molecule.

View Article and Find Full Text PDF

Obesity and excess weight have become serious health problems in our developed societies today. Increased blood pressure, blood glucose levels and abnormal blood lipids are frequent consequences. Inhibition of digestive enzymes by pharmacological or nutritional intervention are one avenue to be considered to treat this population.

View Article and Find Full Text PDF