The precise temporal coordination of neural activity is crucial for brain function. In the hippocampus, this precision is reflected in the oscillatory rhythms observed in CA1. While it is known that a balance between excitatory and inhibitory activity is necessary to generate and maintain these oscillations, the differential contribution of feedforward and feedback inhibition remains ambiguous.
View Article and Find Full Text PDFThe structured reactivation of hippocampal neuronal ensembles during fast synchronous oscillatory events, termed sharp-wave ripples (SWRs), has been suggested to play a crucial role in the storage and use of memory. Activity in both the CA2 and CA3 subregions can precede this population activity in CA1, and chronic inhibition of either region alters SWR oscillations. However, the precise contribution of CA2 to the oscillation, as well as to the reactivation of CA1 neurons within it, remains unclear.
View Article and Find Full Text PDFChronic and acute stress differentially affect behavior as well as the structural integrity of the hippocampus, a key brain region involved in cognition and memory. However, it remains unclear if and how the facilitatory effects of acute stress on hippocampal information coding are disrupted as the stress becomes chronic. To examine this, we compared the impact of acute and chronic stress on neural activity in the CA1 subregion of male mice subjected to a chronic immobilization stress (CIS) paradigm.
View Article and Find Full Text PDFThe hippocampus is critical for memory formation. The hypothalamic supramammillary nucleus (SuM) sends long-range projections to hippocampal area CA2. While the SuM-CA2 connection is critical for social memory, how this input acts on the local circuit is unknown.
View Article and Find Full Text PDFAdverse effects of chronic stress include anxiety, depression, and memory deficits. Some of these stress-induced behavioural deficits are mediated by impaired hippocampal function. Much of our current understanding about how stress affects the hippocampus has been derived from post-mortem analyses of brain slices at fixed time points.
View Article and Find Full Text PDFThe ability to recognize information that is incongruous with previous experience is critical for survival. Novelty signals have therefore evolved in the mammalian brain to enhance attention, perception and memory. Although the importance of regions such as the ventral tegmental area and locus coeruleus in broadly signalling novelty is well-established, these diffuse monoaminergic transmitters have yet to be shown to convey specific information on the type of stimuli that drive them.
View Article and Find Full Text PDFThe long-term storage of episodic memory requires communication between prefrontal cortex and hippocampus. However, how consolidation alters dynamic interactions between these regions during subsequent recall remains unexplored. Here we perform simultaneous electrophysiological recordings from anterior cingulate cortex (ACC) and hippocampal CA1 in mice during recall of recent and remote contextual fear memory.
View Article and Find Full Text PDFp35 is an activating co-factor of Cyclin-dependent kinase 5 (Cdk5), a protein whose dysfunction has been implicated in a wide-range of neurological disorders including cognitive impairment and disease. Inducible deletion of the p35 gene in adult mice results in profound deficits in hippocampal-dependent spatial learning and synaptic physiology, however the impact of the loss of p35 function on hippocampal physiology and spatial coding remains unknown. Here, we recorded CA1 pyramidal cell activity in freely behaving p35 cKO and control mice and found that place cells in the mutant mice have elevated firing rates and impaired spatial coding, accompanied by changes in the temporal organization of spiking both during exploration and rest.
View Article and Find Full Text PDFDown syndrome, the leading genetic cause of intellectual disability, results from an extra-copy of chromosome 21. Mice engineered to model this aneuploidy exhibit Down syndrome-like memory deficits in spatial and contextual tasks. While abnormal neuronal function has been identified in these models, most studies have relied on measures.
View Article and Find Full Text PDFHippocampal CA2 pyramidal cells project into both the neighboring CA1 and CA3 subfields, leaving them well positioned to influence network physiology and information processing for memory and space. While recent work has suggested unique roles for CA2, including encoding position during immobility and generating ripple oscillations, an interventional examination of the integrative functions of these connections has yet to be reported. Here we demonstrate that CA2 recruits feedforward inhibition in CA3 and that chronic genetically engineered shutdown of CA2-pyramidal-cell synaptic transmission consequently results in increased excitability of the recurrent CA3 network.
View Article and Find Full Text PDFEpilepsy is a neurological disorder defined by the presence of seizure activity, manifest both behaviorally and as abnormal activity in neuronal networks. An established model to study the disorder in rodents is the systemic injection of kainic acid, an excitatory neurotoxin that at low doses quickly induces behavioral and electrophysiological seizures. Although the CA3 region of the hippocampus has been suggested to be crucial for kainic acid-induced seizure, because of its strong expression of kainate glutamate receptors and its high degree of recurrent connectivity, the precise role of excitatory transmission in CA3 in the generation of seizure and the accompanying increase in neuronal oscillations remains largely untested.
View Article and Find Full Text PDFStress alters the function of many physiological processes throughout the body, including in the brain. A neural circuit particularly vulnerable to the effects of stress is the hippocampus, a key component of the episodic and spatial memory system in both humans and rodents. Earlier studies have provided snapshots of morphological, molecular, physiological and behavioral changes in the hippocampus following either acute or repeated stress.
View Article and Find Full Text PDFContextual learning involves associating cues with an environment and relating them to past experience. Previous data indicate functional specialization within the hippocampal circuit: the dentate gyrus (DG) is crucial for discriminating similar contexts, whereas CA3 is required for associative encoding and recall. Here, we used Arc/H1a catFISH imaging to address the contribution of the largely overlooked CA2 region to contextual learning by comparing ensemble codes across CA3, CA2, and CA1 in mice exposed to familiar, altered, and novel contexts.
View Article and Find Full Text PDF