The Anaphase-Promoting Complex/Cyclosome (APC/C) is a ubiquitin ligase that promotes the ubiquitination and subsequent degradation of numerous cell cycle regulators during mitosis and in G1. Proteins are recruited to the APC/C by activator proteins such as Cdh1. During the cell cycle, Cdh1 is subject to precise regulation so that substrates are not degraded prematurely.
View Article and Find Full Text PDFMicrosporidia are parasitic fungi-like organisms that invade the interior of living cells and cause chronic disorders in a broad range of animals, including humans. These pathogens have the tiniest known genomes among eukaryotic species, for which they serve as a model for exploring the phenomenon of genome reduction in obligate intracellular parasites. Here we report a case study to show an apparent effect of overall genome reduction on the primary structure and activity of aminoacyl-tRNA synthetases, indispensable cellular proteins required for protein synthesis.
View Article and Find Full Text PDFThe anaphase-promoting complex in partnership with its activator, Cdh1, is an E3 ubiquitin ligase responsible for targeting cell cycle proteins during G1 phase. In the budding yeast Saccharomyces cerevisiae, Cdh1 associates with the deubiquitinating enzyme Ubp15, but the significance of this interaction is unclear. To better understand the physiological role(s) of Ubp15, we examined cell cycle phenotypes of cells lacking Ubp15.
View Article and Find Full Text PDFThe Anaphase-Promoting Complex/Cyclosome (APC/C) is an essential ubiquitin ligase that targets numerous proteins for proteasome-mediated degradation in mitosis and G1. To gain further insight into cellular pathways controlled by APC/C(Cdh1), we developed two complementary approaches to identify additional APC/C(Cdh1) substrates in budding yeast. First, we analyzed the stabilities of proteins that were expressed at the same time in the cell cycle as known APC/C substrates.
View Article and Find Full Text PDFThe anaphase-promoting complex/cyclosome (APC/C) is an essential ubiquitin ligase that targets cell cycle proteins for proteasome-mediated degradation in mitosis and G1. The APC regulates a number of cell cycle processes, including spindle assembly, mitotic exit, and cytokinesis, but the full range of its functions is still unknown. To better understand cellular pathways controlled by the APC, we performed a proteomic screen to identify additional APC substrates.
View Article and Find Full Text PDFThe ubiquitin ligase activity of the anaphase-promoting complex (APC)/cyclosome needs to be tightly regulated for proper cell cycle progression. Substrates are recruited to the APC by the Cdc20 and Cdh1 accessory proteins. The Cdh1-APC interaction is inhibited through phosphorylation of Cdh1 by Cdc28, the major cyclin-dependent protein kinase in budding yeast.
View Article and Find Full Text PDFIn the yeast Saccharomyces cerevisiae, a ring of myosin II forms in a septin-dependent manner at the budding site in late G1. This ring remains at the bud neck until the onset of cytokinesis, when actin is recruited to it. The actomyosin ring then contracts, septum formation occurs concurrently, and cytokinesis is soon completed.
View Article and Find Full Text PDFCtk1 is a Saccharomyces cerevisiae cyclin-dependent protein kinase (CDK) that assembles with Ctk2 and Ctk3 to form an active protein kinase complex, CTDK-I. CTDK-I phosphorylates Ser2 within the RNA polymerase II C-terminal domain, an activity that is required for efficient transcriptional elongation and 3' RNA processing. Ctk1 contains a conserved T loop, which undergoes activating phosphorylation in other CDKs.
View Article and Find Full Text PDFCTDK-I phosphorylates the C-terminal domain (CTD) of the large subunit of yeast RNA polymerase II in a reaction that stimulates transcription elongation. Mutations in CTDK-I subunits-Ctk1p, Ctk2p, and Ctk3p-confer conditional phenotypes. In this study, we examined the role of CTDK-I in the DNA damage response.
View Article and Find Full Text PDF