Adoptive cell transfer with chimeric antigen receptor (CAR)-expressing T cells can induce remarkable complete responses in cancer patients. Therapeutic success has been correlated with central and stem cell-like memory T cell subsets in the infusion product, which are better able to drive efficient CAR T cell expansion and long-term persistence. We previously reported that inhibition of the mitochondrial pyruvate carrier (MPC) during mouse CAR T cell culture induces a memory phenotype and enhances antitumor efficacy against melanoma.
View Article and Find Full Text PDFThe great success of chimeric antigen receptor (CAR) T-cell therapy in the treatment of patients with B-cell malignancies has prompted its translation to solid tumors. In the case of glioblastoma (GBM), clinical trials have shown modest efficacy, but efforts to develop more effective anti-GBM CAR T cells are ongoing. In this study, we selected protein tyrosine phosphatase receptor type Z (PTPRZ1) as a target for GBM treatment.
View Article and Find Full Text PDFUnlabelled: Over two decades, most cancer vaccines failed clinical development. Key factors may be the lack of efficient priming with tumor-specific antigens and strong immunostimulatory signals. MVX-ONCO-1, a personalized cell-based cancer immunotherapy, addresses these critical steps utilizing clinical-grade material to replicate a successful combination seen in experimental models: inactivated patient's own tumor cells, providing the widest cancer-specific antigen repertoire and a standardized, sustained, local delivery over days of a potent adjuvant achieved by encapsulated cell technology.
View Article and Find Full Text PDFBackground: Solid tumors such as glioblastoma (GBM) exhibit hypoxic zones that are associated with poor prognosis and immunosuppression through multiple cell intrinsic mechanisms. However, release of extracellular vesicles (EVs) has the potential to transmit molecular cargos between cells. If hypoxic cancer cells use EVs to suppress functions of macrophages under adequate oxygenation, this could be an important underlying mechanism contributing to the immunosuppressive and immunologically cold tumor microenvironment of tumors such as GBM.
View Article and Find Full Text PDFBackground: Glioblastoma is the most common and most aggressive malignant primary brain tumor in adults. Glioblastoma cells synthesize and secrete large quantities of the excitatory neurotransmitter glutamate, driving epilepsy, neuronal death, tumor growth and invasion. Moreover, neuronal networks interconnect with glioblastoma cell networks through glutamatergic neuroglial synapses, activation of which induces oncogenic calcium oscillations that are propagated via gap junctions between tumor cells.
View Article and Find Full Text PDFWe previously showed that chimeric antigen receptor (CAR) T-cell therapy targeting epidermal growth factor receptor variant III (EGFRvIII) produces upregulation of programmed death-ligand 1 (PD-L1) in the tumor microenvironment (TME). Here we conducted a phase 1 trial (NCT03726515) of CAR T-EGFRvIII cells administered concomitantly with the anti-PD1 (aPD1) monoclonal antibody pembrolizumab in patients with newly diagnosed, EGFRvIII glioblastoma (GBM) (n = 7). The primary outcome was safety, and no dose-limiting toxicity was observed.
View Article and Find Full Text PDFCD8 cytotoxic T lymphocytes (CTLs) play a crucial role in anti-tumor immunity. In a previous study, we identified a subset of murine effector CTLs expressing the hepatocyte growth factor (HGF) receptor, c-Met (c-Met CTLs), that are endowed with enhanced cytolytic capacity. HGF directly inhibited the cytolytic function of c-Met CTLs, both in 2D in vitro assays and in vivo, leading to reduced T cell responses against metastatic melanoma.
View Article and Find Full Text PDFDendritic cells (DCs) are antigen-presenting myeloid cells that regulate T cell activation, trafficking and function. Monocyte-derived DCs pulsed with tumor antigens have been tested extensively for therapeutic vaccination in cancer, with mixed clinical results. Here, we present a cell-therapy platform based on mouse or human DC progenitors (DCPs) engineered to produce two immunostimulatory cytokines, IL-12 and FLT3L.
View Article and Find Full Text PDFGlioblastoma (GBM) is a deadly and the most common primary brain tumor in adults. Due to their regulation of a high number of mRNA transcripts, microRNAs (miRNAs) are key molecules in the control of biological processes and are thereby promising therapeutic targets for GBM patients. In this regard, we recently reported miRNAs as strong modulators of GBM aggressiveness.
View Article and Find Full Text PDFProtective immunity against pathogens or cancer is mediated by the activation and clonal expansion of antigen-specific naive T cells into effector T cells. To sustain their rapid proliferation and effector functions, naive T cells switch their quiescent metabolism to an anabolic metabolism through increased levels of aerobic glycolysis, but also through mitochondrial metabolism and oxidative phosphorylation, generating energy and signalling molecules. However, how that metabolic rewiring drives and defines the differentiation of T cells remains unclear.
View Article and Find Full Text PDFObjective: To evaluate ChatGPT's performance in brain glioma adjuvant therapy decision-making.
Methods: We randomly selected 10 patients with brain gliomas discussed at our institution's central nervous system tumour board (CNS TB). Patients' clinical status, surgical outcome, textual imaging information and immuno-pathology results were provided to ChatGPT V.
Unlabelled: PI3K delta (PI3Kδ) inhibitors are used to treat lymphomas but safety concerns and limited target selectivity curbed their clinical usefulness. PI3Kδ inhibition in solid tumors has recently emerged as a potential novel anticancer therapy through the modulation of T-cell responses and direct antitumor activity. Here we report the exploration of IOA-244/MSC2360844, a first-in-class non-ATP-competitive PI3Kδ inhibitor, for the treatment of solid tumors.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T cell therapy represents a scientific breakthrough in the treatment of advanced hematological malignancies. It relies on cell engineering to direct the powerful cytotoxic T-cell activity toward tumor cells. Nevertheless, these highly powerful cell therapies can trigger substantial toxicities such as cytokine release syndrome (CRS) and immune cell-associated neurological syndrome (ICANS).
View Article and Find Full Text PDFPraxis (Bern 1994)
March 2023
Oncology has been rapidly evolving over the past decade with tremendous therapeutic development. Engineered cell therapies such as chimeric antigen receptor (CAR)-T cells are increasingly used in daily practice, and provided a paradigm change especially for hematological malignancies. Their development is a scientific and technological achievement, but their toxicities can be life-threatening.
View Article and Find Full Text PDFWhile more than half of non-Hodgkin lymphomas (NHL) can be cured with modern frontline chemoimmunotherapy regimens, outcomes of relapsed and/or refractory (r/r) disease in subsequent lines remain poor, particularly if considered ineligible for hematopoietic stem cell transplantation. Hence, r/r NHLs represent a population with a high unmet medical need. This therapeutic gap has been partially filled by adoptive immunotherapy.
View Article and Find Full Text PDFBackground: Several studies proposed the use of positron emission tomography (PET) with Prostate Specific Membrane Antigen (PSMA)-targeting radiopharmaceuticals in brain tumors. Our aim is to calculate the diagnostic accuracy of these methods in high-grade gliomas (HGG) with a bivariate meta-analysis.
Methods: A comprehensive literature search of studies on the diagnostic accuracy of PET/CT or PET/MRI with PSMA-targeting radiopharmaceuticals in HGG was performed.
Given the renewed interest in vaccine development sparked by the COVID-19 pandemic, we are revisiting the current state of vaccine development for cancer prevention and treatment. Experts discuss different vaccine types, their antigens and modes of action, and where we stand on their clinical development, plus the challenges we need to overcome for their broad implementation.
View Article and Find Full Text PDFGlycolysis, including both lactate fermentation and pyruvate oxidation, orchestrates CD8 T cell differentiation. However, how mitochondrial pyruvate metabolism and uptake controlled by the mitochondrial pyruvate carrier (MPC) impact T cell function and fate remains elusive. We found that genetic deletion of MPC drives CD8 T cell differentiation toward a memory phenotype.
View Article and Find Full Text PDFIn the past decade, substantial advances have been made in understanding the biology of tumour-associated macrophages (TAMs), and their clinical relevance is emerging. A particular aspect that is becoming increasingly clear is that the interaction of TAMs with cancer cells and stromal cells in the tumour microenvironment enables and sustains most of the hallmarks of cancer. Therefore, manipulation of TAMs could enable improved disease control in a substantial fraction of patients across a large number of cancer types.
View Article and Find Full Text PDFT cell modification with genes that encode chimeric antigen receptors (CAR-T cells) has shown tremendous promise for the treatment of B cell malignancies. The successful translation of CAR-T cell therapy to other tumor types, including solid tumors, is the next big challenge. As the field advances from second- to next-generation CAR-T cells comprising multiple genetic modifications, more sophisticated methods and tools to engineer T cells are being developed.
View Article and Find Full Text PDFAdoptive cell therapy with CAR-T cells (Chimeric Antigen Receptor T-cells) genetically modifies T lymphocytes in such a way that they express a new receptor capable of targeting certain specific tumor antigens. This therapy showed impressive results in some hematological malignancies but still faces many hurdles in the treatment of solid tumours. Indeed, paucity of antigen targets, antigen heterogeneity, poor trafficking to the tumor site and the immunosuppressive tumour microenvironment are the main challenges in solid tumours.
View Article and Find Full Text PDF