Background: The von Willebrand factor (VWF) is a key player in regulating hemostasis through adhesion of platelets to sites of vascular injury. It is a large, multi-domain, mechano-sensitive protein that is stabilized by a net of disulfide bridges. Binding to platelet integrin is achieved by the VWF-C4 domain, which exhibits a fixed fold, even under conditions of severe mechanical stress, but only if critical internal disulfide bonds are closed.
View Article and Find Full Text PDFCoupled-perturbed equations for degenerate orbitals were implemented for third order density-functional tight binding, which allowed the use of Mulliken charges as reaction coordinates. The method was applied to proton-coupled electron transfer (PCET) reactions in a model system and thoroughly tested for QM and QM/MM setups (i.e.
View Article and Find Full Text PDFGlutaredoxins are small enzymes that catalyze the oxidation and reduction of protein disulfide bonds by the thiol-disulfide exchange mechanism. They have either one or two cysteines in their active site, resulting in different catalytic reaction cycles that have been investigated in many experimental studies. However, the exact mechanisms are not yet fully known, and to our knowledge, no theoretical studies have been performed to elucidate the underlying mechanism.
View Article and Find Full Text PDFSemiempirical methods like density functional tight-binding (DFTB) allow extensive phase space sampling, making it possible to generate free energy surfaces of complex reactions in condensed-phase environments. Such a high efficiency often comes at the cost of reduced accuracy, which may be improved by developing a specific reaction parametrization (SRP) for the particular molecular system. Thiol-disulfide exchange is a nucleophilic substitution reaction that occurs in a large class of proteins.
View Article and Find Full Text PDFThe roles of structural factors and of electrostatic interactions with the environment on the outcome of thiol-disulfide exchange reactions were investigated in a mutated immunoglobulin domain (I27*) under mechanical stress. An extensive ensemble of molecular dynamics trajectories was generated by means of QM/MM simulations for a total sampling of 5.7 μs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
Extensive classical and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations are used to establish the structural features of the O state in bacteriorhodopsin (bR) and its conversion back to the bR ground state. The computed free energy surface is consistent with available experimental data for the kinetics and thermodynamics of the O to bR transition. The simulation results highlight the importance of the proton release group (PRG, consisting of Glu194/204) and the conserved arginine 82 in modulating the hydration level of the protein cavity.
View Article and Find Full Text PDF