A new series of potent and selective histamine-3 receptor (H3R) antagonists was identified on the basis of an azaspiro[2.5]octane carboxamide scaffold. Many scaffold modifications were largely tolerated, resulting in nanomolar-potent compounds in the H3R functional assay.
View Article and Find Full Text PDFBenzothiazole amides were identified as TRPV1 antagonists from high throughput screening using recombinant human TRPV1 receptor and structure-activity relationships were explored to pinpoint key pharmacophore interactions. By increasing aqueous solubility, through the attachment of polar groups to the benzothiazole core, and enhancing metabolic stability, by blocking metabolic sites, the drug-like properties and pharmokinetic profiles of benzothiazole compounds were sufficiently optimized such that their therapeutic potential could be verified in rat pharmacological models of pain.
View Article and Find Full Text PDFAs a continuation of our efforts to discover and develop apoptosis inducing 4-aryl-4H-chromenes as novel anticancer agents, we explored modifications at the 2- and 3-positions. It was found that replacement of the 3-cyano group by an ester, including methyl and ethyl ester, resulted in >200-fold reduction of activity. Conversion of the 2-amino group into an amide or urea resulted in 4- to 10-fold drop of activity.
View Article and Find Full Text PDFAs a continuation of our efforts to discover and develop the apoptosis inducing 4-aryl-4H-chromenes as novel anticancer agents, we explored the SAR of 4-aryl-4H-chromenes with modifications at the 7- and 5-, 6-, 8-positions. It was found that a small hydrophobic group, such as NMe2, NH2, NHEt, and OMe, is preferred at the 7-position. Di-substitution at either the 5,7-positions or the 6,7-positions generally led to a large decrease in potency.
View Article and Find Full Text PDFA novel series of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes was identified as potent apoptosis inducers through a cell-based high throughput screening assay. Six compounds from this series, MX-58151, MX-58276, MX-76747, MX-116214, MX-116407, and MX-126303, were further profiled and shown to have potent in vitro cytotoxic activity toward proliferating cells only and to interact with tubulin at the colchicine-binding site, thereby inhibiting tubulin polymerization and leading to cell cycle arrest and apoptosis. Furthermore, these compounds were shown to disrupt newly formed capillary tubes in vitro at low nanomolar concentrations.
View Article and Find Full Text PDFThe discovery of a novel class of HCV NS5B polymerase inhibitors, 3-arylsulfonylamino-5-phenyl-thiophene-2-carboxylic acids is described. SAR studies have yielded several potent inhibitors of HCV polymerase as well as of HCV subgenomic RNA replication in Huh-7 cells.
View Article and Find Full Text PDF