Publications by authors named "Denis Jelovina"

Article Synopsis
  • Two-photon double ionization reveals electron correlation, particularly complicated in molecular targets due to nuclear motion influencing electron-electron interactions.
  • Momentum-coincident measurements allow researchers to capture a detailed image of how the molecule breaks apart under this ionization process.
  • The study emphasizes that even short pulse durations (like 1.5 fs) significantly affect nuclear motion, revealing strong correlations between nuclear and electronic dynamics, leading to unique angular distribution patterns and interferences in electron emissions.
View Article and Find Full Text PDF

We present the experimental observation of two-center interference in the ionization time delays of Kr_{2}. Using attosecond electron-ion-coincidence spectroscopy, we simultaneously measure the photoionization delays of krypton monomer and dimer. The relative time delay is found to oscillate as a function of the electron kinetic energy, an effect that is traced back to constructive and destructive interference of the photoelectron wave packets that are emitted or scattered from the two atomic centers.

View Article and Find Full Text PDF

Electron dynamics in water are of fundamental importance for a broad range of phenomena, but their real-time study faces numerous conceptual and methodological challenges. Here we introduce attosecond size-resolved cluster spectroscopy and build up a molecular-level understanding of the attosecond electron dynamics in water. We measure the effect that the addition of single water molecules has on the photoionization time delays of water clusters.

View Article and Find Full Text PDF

Photoionization is a process taking place on attosecond time scales. How its properties evolve from isolated particles to the condensed phase is an open question of both fundamental and practical relevance. Here, we review recent work that has advanced the study of photoionization dynamics from atoms to molecules, clusters and the liquid phase.

View Article and Find Full Text PDF

Electronic dynamics in liquids are of fundamental importance, but time-resolved experiments have so far remained limited to the femtosecond time scale. We report the extension of attosecond spectroscopy to the liquid phase. We measured time delays of 50 to 70 attoseconds between the photoemission from liquid water and that from gaseous water at photon energies of 21.

View Article and Find Full Text PDF

Autoionizing resonances are paradigmatic examples of two-path wave interferences between direct photoionization, which takes a few attoseconds, and ionization via quasi-bound states, which takes much longer. Time-resolving the evolution of these interferences has been a long-standing goal, achieved recently in the helium atom owing to progress in attosecond technologies. However, already for the hydrogen molecule, similar time imaging has remained beyond reach due to the complex interplay between fast nuclear and electronic motions.

View Article and Find Full Text PDF

Efficient excitation of Fano resonances in plasmonic systems usually requires complex nano-structure geometries and some degree of symmetry breaking. However, a single-layered concentric core-shell particle presents inherent Fano profiles in the scattering spectra when sphere and cavity modes spectrally overlap. Weak hybridization and suitable choice of core and shell materials gives rise to strong electric dipolar Fano resonances in these systems and retardation effects can result in resonances of higher multipolar order or of magnetic type.

View Article and Find Full Text PDF