Independent vector analysis (IVA) can be viewed as an extension of independent component analysis (ICA) to multiple datasets. It exploits the statistical dependency between different datasets through mutual information. In the context of motor imagery classification based on electroencephalogram (EEG) signals for the brain-computer interface (BCI), several methods have been proposed to extract features efficiently, mainly based on common spatial patterns, filter banks, and deep learning.
View Article and Find Full Text PDF