The universally conserved protein YidC aids in the insertion and folding of transmembrane polypeptides. Supposedly, a charged arginine faces its hydrophobic lipid core, facilitating polypeptide sliding along YidC's surface. How the membrane barrier to other molecules may be maintained is unclear.
View Article and Find Full Text PDFThe high propensity of protons to stay at interfaces has attracted much attention over the decades. It enables long-range interfacial proton diffusion without relying on titratable residues or electrostatic attraction. As a result, various phenomena manifest themselves, ranging from spillover in material sciences to local proton circuits between proton pumps and ATP synthases in bioenergetics.
View Article and Find Full Text PDFTopological rearrangements of biological membranes, such as fusion and fission, often require a sophisticated interplay between different proteins and cellular membranes. However, in the case of fusion proteins of enveloped viruses, even one molecule can execute membrane restructurings. Growing evidence indicates that matrix proteins of enveloped viruses can solely trigger the membrane bending required for another crucial step in virogenesis, the budding of progeny virions.
View Article and Find Full Text PDFAdenine nucleotide translocase (ANT) is a well-known mitochondrial exchanger of ATP against ADP. In contrast, few studies have shown that ANT also mediates proton transport across the inner mitochondrial membrane. The results of these studies are controversial and lead to different hypotheses about molecular transport mechanisms.
View Article and Find Full Text PDFThe bacterial channel SecYEG efficiently translocates both hydrophobic and hydrophilic proteins across the plasma membrane. Translocating polypeptide chains may dislodge the plug, a half helix that blocks the permeation of small molecules, from its position in the middle of the aqueous translocation channel. Instead of the plug, six isoleucines in the middle of the membrane supposedly seal the channel, by forming a gasket around the translocating polypeptide.
View Article and Find Full Text PDFProton transport at water/membrane interfaces plays a fundamental role for a myriad of bioenergetic processes. Here we have performed ab initio molecular dynamics simulations of proton transfer along two phosphatidylcholine bilayers. As found in previous theoretical studies, the excess proton is preferably located at the water/membrane interface.
View Article and Find Full Text PDFThis review focusses on the energetics of protein translocation via the Sec translocation machinery. First we complement structural data about SecYEG's conformational rearrangements by insight obtained from functional assays. These include measurements of SecYEG permeability that allow assessment of channel gating by ligand binding and membrane voltage.
View Article and Find Full Text PDFProton diffusion along biological membranes is vitally important for cellular energetics. Here we extended previous time-resolved fluorescence measurements to study the time and temperature dependence of surface proton transport. We determined the Gibbs activation energy barrier ΔG that opposes proton surface-to-bulk release from Arrhenius plots of (i) protons' surface diffusion constant and (ii) the rate coefficient for proton surface-to-bulk release.
View Article and Find Full Text PDFThe heterotrimeric SecYEG complex cooperates with YidC to facilitate membrane protein insertion by an unknown mechanism. Here we show that YidC contacts the interior of the SecY channel resulting in a ligand-activated and voltage-dependent complex with distinct ion channel characteristics. The SecYEG pore diameter decreases from 8 Å to only 5 Å for the YidC-SecYEG pore, indicating a reduction in channel cross-section by YidC intercalation.
View Article and Find Full Text PDFHigh-speed atomic force microscopy (HS-AFM) can be used to visualize function-related conformational changes of single soluble proteins. Similar studies of single membrane proteins are, however, hampered by a lack of suitable flat, non-interacting membrane supports and by high protein mobility. Here we show that streptavidin crystals grown on mica-supported lipid bilayers can be used as porous supports for membranes containing biotinylated lipids.
View Article and Find Full Text PDFWhile engaged in protein transport, the bacterial translocon SecYEG must maintain the membrane barrier to small ions. The preservation of the proton motif force was attributed to (i) cation exclusion, (ii) engulfment of the nascent chain by the hydrophobic pore ring, and (iii) a half-helix partly plugging the channel. In contrast, we show here that preservation of the proton motif force is due to a voltage-driven conformational change.
View Article and Find Full Text PDFIn co-translational translocation, the ribosome funnel and the channel of the protein translocation complex SecYEG are aligned. For the nascent chain to enter the channel immediately after synthesis, a yet unidentified signal triggers displacement of the SecYEG sealing plug from the pore. Here, we show that ribosome binding to the resting SecYEG channel triggers this conformational transition.
View Article and Find Full Text PDFFast lateral proton migration along membranes is of vital importance for cellular energy homeostasis and various proton-coupled transport processes. It can only occur if attractive forces keep the proton at the interface. How to reconcile this high affinity to the membrane surface with high proton mobility is unclear.
View Article and Find Full Text PDFThe first attempt has been made to suggest a model of influenza A virus matrix M1 protein spatial structure and molecule orientation within a virion on the basis of tritium planigraphy data and theoretical prediction results. Limited in situ proteolysis of the intact virions with bromelain and surface plasmon resonance spectroscopy study of the M1 protein interaction with lipid coated surfaces were used for independent confirmation of the proposed model.
View Article and Find Full Text PDF