Publications by authors named "Denis Funfschilling"

Serpentine microchannels are known for their effective particle focusing through Dean flow-induced rotational effects, which are used in compact designs for size-dependent focusing in medical diagnostics. This study explores square serpentine microchannels, a geometry that has recently gained prominence in inertial microfluidics, and presents a modification of square wave microchannels for improved particle separation and focusing. The proposed modification incorporates an additional U-shaped unit to convert the square wave microchannel into a non-axisymmetric structure, which enhances the Dean flow and consequently increases the Dean drag force.

View Article and Find Full Text PDF
Article Synopsis
  • Breast implants, commonly used after cancer surgery, need regular replacement to prevent ruptures, but there's a lack of clear guidelines for when to change them.
  • A study on 35 explants showed that the stiffness of the implants increased significantly after about 8 years, suggesting they become less flexible and more prone to rupture over time.
  • Techniques like ultrasound elastography can potentially provide a non-invasive way to assess the mechanical properties of implants in patients, helping to estimate rupture risk and determine the timing for replacement.
View Article and Find Full Text PDF

A continuous emulsion/solvent diffusion process was designed for the preparation of polysaccharide-covered poly(d,l-lactide) (PLA) microparticles. The emulsification step was carried out in a flow-focusing junction where ethyl acetate containing dissolved PLA was dispersed into an aqueous solution of hydrophobically modified dextran. It was demonstrated that poly(dimethylsiloxane) devices could be used for oil-in-water emulsion preparation provided that the microfluidic devices were preconditioned by simply circulating the aqueous phase containing the amphiphilic polysaccharide during a sufficient time (30 h).

View Article and Find Full Text PDF

The effect of confinement on the droplet formation in T junctions was studied for three configurations of fluid injection. The sizes of the main droplets and the satellite droplets were measured in the squeezing and dripping regimes. The evolution of droplet sizes with capillary number in the continuous phase is similar to that in flow-focusing junctions, i.

View Article and Find Full Text PDF

We report results for the temperature profiles of turbulent Rayleigh-Bénard convection (RBC) in the interior of a cylindrical sample of aspect ratio Γ≡D/L=0.50 (D and L are the diameter and height, respectively). Both in the classical and in the ultimate state of RBC we find that the temperature varies as A×ln(z/L)+B, where z is the distance from the bottom or top plate.

View Article and Find Full Text PDF

Measurements of the Nusselt number Nu and of a Reynolds number Re(eff) for Rayleigh-Bénard convection (RBC) over the Rayleigh-number range 10(12)≲Ra≲10(15) and for Prandtl numbers Pr near 0.8 are presented. The aspect ratio Γ≡D/L of a cylindrical sample was 0.

View Article and Find Full Text PDF

Measurements of the Nusselt number Nu and of temperature variations DeltaTb in the bulk fluid are reported for turbulent Rayleigh-Bénard convection of a cylindrical sample. They cover the Rayleigh-number range 10(9) less than or similar to Ra less than or similar to 3x10(14) using He (Prandtl number Pr=0.67), N2 (Pr=0.

View Article and Find Full Text PDF

We report measurements of turbulent heat transport in samples of ethane (C2H6) heated from below while the applied temperature difference DeltaT straddled the liquid-vapor coexistence curve T(phi)(P). When the sample top temperature T(t) decreased below T(phi), droplet condensation occurred and the latent heat of vaporization H provided an additional heat-transport mechanism. The effective conductivity lambda(eff) increased linearly with decreasing T(t), and reached a maximum value lambda(eff)(*) that was an order of magnitude larger than the single-phase lambda(eff).

View Article and Find Full Text PDF

As shown in earlier work [Ahlers, J. Fluid Mech. 569, 409 (2006)], non-Oberbeck-Boussinesq (NOB) corrections to the center temperature in turbulent Rayleigh-Bénard convection in water and also in glycerol are governed by the temperature dependences of the kinematic viscosity and the thermal diffusion coefficient.

View Article and Find Full Text PDF

Non-Oberbeck-Boussinesq (NOB) effects are measured experimentally and calculated theoretically for strongly turbulent Rayleigh-Bénard convection of ethane gas under pressure where the material properties strongly depend on the temperature. Relative to the Oberbeck-Boussinesq case we find a decrease of the central temperature as compared to the arithmetic mean of the top- and bottom-plate temperature and an increase of the Nusselt number. Both effects are of opposite sign and greater magnitude than those for NOB convection in liquids like water.

View Article and Find Full Text PDF

We report on the early time ordering in a nematic liquid crystal subjected to a sudden change in an external ac electric field. We compare time evolution for two different initial states of electroconvection. Electroconvection is a highly driven state of a nematic liquid crystal involving convective motion of the fluid and periodic variations of the molecular alignment.

View Article and Find Full Text PDF

We used the time correlation of shadowgraph images to determine the angle Theta of the horizontal component of the plume velocity above (below) the center of the bottom (top) plate of a cylindrical Rayleigh-Bénard cell of aspect ratio Gamma identical with D/L=1 (D is the diameter and L approximately 87 mm is the height) in the Rayleigh-number range 7 x 10(7) View Article and Find Full Text PDF

We report on the growth of domains of standing waves in electroconvection in a nematic liquid crystal, focusing on the evolution of domain walls. An ac voltage is applied to the system, forming an initial state that consists of traveling striped patterns with two different orientations, zig and zag rolls. The standing waves are generated by suddenly applying a periodic modulation of the amplitude of the applied voltage that is approximately resonant with the traveling frequency of the pattern.

View Article and Find Full Text PDF

Electroconvection using the liquid crystal N4 is studied as a function of two control parameters: the applied frequency and the applied voltage. As a function of voltage, there is a rich series of bifurcations that takes the system from stationary rolls to chaos. As a function of the frequency, the initial pattern changes from stationary oblique rolls at low frequencies to stationary normal rolls at higher frequencies.

View Article and Find Full Text PDF