The cortical network that processes visual cues to self-motion was characterized with functional magnetic resonance imaging in 3 awake behaving macaques. The experimental protocol was similar to previous human studies in which the responses to a single large optic flow patch were contrasted with responses to an array of 9 similar flow patches. This distinguishes cortical regions where neurons respond to flow in their receptive fields regardless of surrounding motion from those that are sensitive to whether the overall image arises from self-motion.
View Article and Find Full Text PDFPrimates can recognize objects embedded in complex natural scenes in a glimpse. Rapid categorization paradigms have been extensively used to study our core perceptual abilities when the visual system is forced to operate under strong time constraints. However, the neural underpinning of rapid categorization remains to be understood, and the incredible speed of sight has yet to be reconciled with modern ventral stream cortical theories of object recognition.
View Article and Find Full Text PDFRapid visual categorization is a crucial ability for survival of many animal species, including monkeys and humans. In real conditions, objects (either animate or inanimate) are never isolated but embedded in a complex background made of multiple elements. It has been shown in humans and monkeys that the contextual background can either enhance or impair object categorization, depending on context/object congruency (for example, an animal in a natural vs.
View Article and Find Full Text PDFConceptual abilities in animals have been shown at several levels of abstraction, but it is unclear whether the analogy with humans results from convergent evolution or from shared brain mechanisms inherited from a common origin. Macaque monkeys can access "non-similarity-based concepts," such as when sorting pictures containing a superordinate target category (animal, tree, etc.) among other scenes.
View Article and Find Full Text PDFThis study aimed to determine the extent to which rapid visual context categorization relies on global scene statistics, such as diagnostic amplitude spectrum information. We measured performance in a Natural vs. Man-made context categorization task using a set of achromatic photographs of natural scenes equalized in average luminance, global contrast, and spectral energy.
View Article and Find Full Text PDFWhereas most scientists agree that scene context can influence object recognition, the time course of such object/context interactions is still unknown. To determine the earliest interactions between object and context processing, we used a rapid go/no-go categorization task in which natural scenes were briefly flashed and subjects required to respond as fast as possible to animal targets. Targets were pasted on congruent (natural) or incongruent (urban) contexts.
View Article and Find Full Text PDFThe extent to which object identification is influenced by the background of the scene is still controversial. On the one hand, the global context of a scene might be considered as an ultimate representation, suggesting that object processing is performed almost systematically before scene context analysis. Alternatively, the gist of a scene could be extracted sufficiently early to be able to influence object categorization.
View Article and Find Full Text PDFHumans are fast and accurate at performing an animal categorization task with natural photographs briefly flashed centrally. Here, this central categorization task is compared to a three position task in which photographs could appear randomly either centrally, or at 3.6 degrees eccentricity (right or left) of the fixation point.
View Article and Find Full Text PDFThe prefrontal cortex supports many cognitive abilities, which humans share to some degree with monkeys. The specialized functions of the prefrontal cortex depend both on the nature of its inputs from other brain regions and on distinctive aspects of local processing. We used functional MRI to compare prefrontal activity between monkey and human subjects when they viewed identical images of objects, either intact or scrambled.
View Article and Find Full Text PDFWe compared neural substrates of two-dimensional shape processing in human and nonhuman primates using functional magnetic resonance (MR) imaging in awake subjects. The comparison of MR activity evoked by viewing intact and scrambled images of objects revealed shape-sensitive regions in occipital, temporal, and parietal cortex of both humans and macaques. Intraparietal cortex in monkeys was relatively more two-dimensional shape sensitive than that of humans.
View Article and Find Full Text PDFThe present report reviews a series of functional magnetic resonance imaging (fMRI) activation studies conducted in parallel in awake monkeys and humans using the same motion stimuli in both species. These studies reveal that motion stimuli engage largely similar cortical regions in the two species. These common regions include MT/V5 and its satellites, of which FST contributes more to the human motion complex than is generally assumed in human imaging.
View Article and Find Full Text PDFUsing functional magnetic resonance imaging (fMRI), we mapped the retinotopic organization throughout the visual cortex of fixating monkeys. The retinotopy observed in areas V1, V2, and V3 was completely consistent with the classical view. V1 and V3 were bordered rostrally by a vertical meridian representation, and V2 was bordered by a horizontal meridian.
View Article and Find Full Text PDFStereopsis, the perception of depth from small differences between the images in the two eyes, provides a rich model for investigating the cortical construction of surfaces and space. Although disparity-tuned cells have been found in a large number of areas in macaque visual cortex, stereoscopic processing in these areas has never been systematically compared using the same stimuli and analysis methods. In order to examine the global architecture of stereoscopic processing in primate visual cortex, we studied fMRI activity in alert, fixating human and macaque subjects.
View Article and Find Full Text PDFIron oxide contrast agents have been employed extensively in anesthetized rodents to enhance fMRI sensitivity and to study the physiology of cerebral blood volume (CBV) in relation to blood oxygen level-dependent (BOLD) signal following neuronal activation. This study quantified the advantages of exogenous agent for repeated neuroimaging in awake, nonhuman primates using a clinical 3 Tesla scanner. A monocrystalline iron oxide nanoparticle (MION) solution was injected at iron doses of 8 to 10 mg/kg in two macaque monkeys.
View Article and Find Full Text PDF