Publications by authors named "Denis Evseenko"

How novel structures emerge during evolution has long fascinated biologists. A dramatic example is how the diminutive bones of the mammalian middle ear arose from ancestral fish jawbones. In contrast, the evolutionary origin of the outer ear, another mammalian innovation, remains a mystery, in part because it is supported by non-mineralized elastic cartilage rarely recovered in fossils.

View Article and Find Full Text PDF

Interleukin-6 (IL-6) is a major pro-inflammatory cytokine that demonstrates a robust correlation with age and body mass index (BMI) as part of the senescence-associated secretory phenotype. IL-6 cytokines also play a crucial role in metabolic homeostasis and regenerative processes primarily via the canonical STAT3 pathway. Thus, selective modulation of IL-6 signaling may offer a unique opportunity for therapeutic interventions.

View Article and Find Full Text PDF

Interleukin-6 (IL-6) is a major pro-inflammatory cytokine for which the levels in plasma demonstrate a robust correlation with age and body mass index (BMI) as part of the senescence-associated secretory phenotype. IL-6 cytokines also play a crucial role in metabolic homeostasis and regenerative processes, primarily via the canonical STAT3 pathway. Thus, selective modulation of IL-6 signaling may offer a unique opportunity for therapeutic interventions.

View Article and Find Full Text PDF

Chronic muscle injuries, such as massive rotator cuff tears, are associated with progressive muscle wasting, fibrotic scarring, and intramuscular fat accumulation. While progenitor cell subsets are usually studied in culture conditions that drive either myogenic, fibrogenic, or adipogenic differentiation, it is still unknown how combined myo-fibro-adipogenic signals, which are expected to occur , modulate progenitor differentiation. We therefore evaluated the differentiation potential of retrospectively generated subsets of primary human muscle mesenchymal progenitors in multiplexed conditions in the presence or absence of 423F drug, a modulator of gp130 signaling.

View Article and Find Full Text PDF

Adult mammals are incapable of multitissue regeneration, and augmentation of this potential may shift current therapeutic paradigms. We found that a common co-receptor of interleukin 6 (IL-6) cytokines, glycoprotein 130 (gp130), serves as a major nexus integrating various context-specific signaling inputs to either promote regenerative outcomes or aggravate disease progression. Via genetic and pharmacological experiments in vitro and in vivo, we demonstrated that a signaling tyrosine 814 (Y814) within gp130 serves as a major cellular stress sensor.

View Article and Find Full Text PDF

Epigenetic mechanisms guiding articular cartilage regeneration and age-related disease such as osteoarthritis (OA) are poorly understood. STAT3 is a critical age-patterned transcription factor highly active in fetal and OA chondrocytes, but the context-specific role of STAT3 in regulating the epigenome of cartilage cells remain elusive. In this study, DNA methylation profiling was performed across human chondrocyte ontogeny to build an epigenetic clock and establish an association between CpG methylation and human chondrocyte age.

View Article and Find Full Text PDF

Human adipose-derived mesenchymal stem cells (ASCs) transduced with a lentiviral vector system to express bone morphogenetic protein 2 (LV-BMP-2) have been shown to reliably heal bone defects in animal models. However, the influence of donor characteristics such as age, sex, race, and medical co-morbidities on ASC yield, growth and bone regenerative capacity, while critical to the successful clinical translation of stem cell-based therapies, are not well understood. Human ASCs isolated from the infrapatellar fat pads in 122 ASC donors were evaluated for cell growth characteristics; 44 underwent additional analyses to evaluate in vitro osteogenic potential, with and without LV-BMP-2 transduction.

View Article and Find Full Text PDF

Complex injury and open reconstructive surgeries of the knee often lead to joint dysfunction that may alter the normal biomechanics of the joint. Two major complications that often arise are excessive deposition of fibrotic tissue and acquired heterotopic endochondral ossification. Knee arthrofibrosis is a fibrotic joint disorder where aberrant buildup of scar tissue and adhesions develop around the joint.

View Article and Find Full Text PDF

Tranexamic acid (TXA) effectively reduces blood loss and transfusion risk during total joint arthroplasty. Additionally, intraoperative irrigation with various antiseptic solutions is often utilized for the management and prevention of surgical site infection. However, interactions between various antiseptic solutions and TXA have not been investigated.

View Article and Find Full Text PDF

Knee fibrosis is characterized by the presence of excessive connective tissue due to dysregulated fibroblast activation following local or systemic tissue damage. Knee fibrosis constitutes a major clinical problem in orthopaedics due to the severe limitation in the knee range of motion that leads to compromised function and patient disability. Knee osteoarthritis is an extremely common orthopedic condition that is associated with patient disability and major costs to the health-care systems worldwide.

View Article and Find Full Text PDF

Growth of long bones and vertebrae is maintained postnatally by a long-lasting pool of progenitor cells. Little is known about the molecular mechanisms that regulate the output and maintenance of the cells that give rise to mature cartilage. Here we demonstrate that postnatal chondrocyte-specific deletion of a transcription factor Stat3 results in severely reduced proliferation coupled with increased hypertrophy, growth plate fusion, stunting and signs of progressive dysfunction of the articular cartilage.

View Article and Find Full Text PDF
Article Synopsis
  • Current treatments help reduce pain but typically replace damaged cartilage with weaker fibrocartilage, which isn't ideal.
  • The development of a new type of cartilage repair using stem cells shows promising results, demonstrating effective long-term healing of cartilage, potentially changing how we approach OA treatment in the future.
View Article and Find Full Text PDF

Cartilage tissue is comprised of extracellular matrix and chondrocytes, a cell type with very low cellular turnover in adults, providing limited capacity for regeneration. However, in development a significant number of chondrocytes actively proliferate and remodel the surrounding matrix. Uncoupling the microenvironmental influences that determine the balance between clonogenic potential and terminal differentiation of these cells is essential for the development of novel approaches for cartilage regeneration.

View Article and Find Full Text PDF

Tissue regeneration is a process that recapitulates and restores organ structure and function. Although previous studies have demonstrated wound-induced hair neogenesis (WIHN) in laboratory mice (Mus), the regeneration is limited to the center of the wound unlike those observed in African spiny (Acomys) mice. Tissue mechanics have been implicated as an integral part of tissue morphogenesis.

View Article and Find Full Text PDF

The most frequent fetal birth defect associated with prenatal Zika virus (ZIKV) infection is brain calcification, which in turn may potentially affect neurological development in infants. Understanding the mechanism could inform the development of potential therapies against prenatal ZIKV brain calcification. In perivascular cells, bone morphogenetic protein (BMP) is an osteogenic factor that undergoes maturation to activate osteogenesis and calcification.

View Article and Find Full Text PDF

The developmental trajectory of human skeletal myogenesis and the transition between progenitor and stem cell states are unclear. We used single-cell RNA sequencing to profile human skeletal muscle tissues from embryonic, fetal, and postnatal stages. In silico, we identified myogenic as well as other cell types and constructed a "roadmap" of human skeletal muscle ontogeny across development.

View Article and Find Full Text PDF

Objective: Inhibition of hedgehog (HH) signaling prevents cartilage degeneration and promotes repair in animal models of osteoarthritis (OA). This study, undertaken in OA models and in human OA articular cartilage, was designed to explore whether kappa opioid receptor (KOR) modulation via the inhibition of HH signaling may have therapeutic potential for achieving disease-modifying activity in OA.

Methods: Primary human articular cartilage and synovial tissue samples from patients with knee OA undergoing total joint replacement and from healthy human subjects were obtained from the National Disease Research Interchange.

View Article and Find Full Text PDF

Purpose: In order to accelerate the tendon-bone healing processes and achieve the efficient osteointegration between the tendon graft and bone tunnel, we aim to design bioactive electrospun nanofiber membranes combined with tendon stem/progenitor cells (TSPCs) to promote osteogenic regeneration of the tendon and bone interface.

Methods: In this study, nanofiber membranes of polycaprolactone (PCL), PCL/collagen I (COL-1) hybrid nanofiber membranes, poly(dopamine) (PDA)-coated PCL nanofiber membranes and PDA-coated PCL/COL-1 hybrid nanofiber membranes were successfully fabricated by electrospinning. The biochemical characteristics and nanofibrous morphology of the membranes, as well as the characterization of rat TSPCs, were defined in vitro.

View Article and Find Full Text PDF

Umbilical cord blood (UCB) has been increasingly explored as an alternative source of stem cells for use in regenerative medicine due to several advantages over other stem-cell sources, including the need for less stringent human leukocyte antigen matching. Combined with an osteoinductive signal, UCB-derived mesenchymal stem cells (MSCs) could revolutionize the treatment of challenging bone defects. This study aimed to develop an regional gene-therapy strategy using -transduced allogeneic UCB-MSCs to promote bone repair.

View Article and Find Full Text PDF

Background: The prospect of treating knee cartilage injury/pathology with mesenchymal stem cells (MSCs) has garnered considerable attention in recent years, but study heterogeneity and a lack of randomized controlled trials (RCTs) preclude quantitative analysis. The purpose of this review was to provide clinicians with an overview of RCTs that addresses 2 key areas that have been largely overlooked: nomenclature inconsistency and selective outcome reporting.

Methods: RCTs that purported to use stem cells or MSCs to treat knee cartilage were identified with use of PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses).

View Article and Find Full Text PDF

Tissue-specific gene expression defines cellular identity and function, but knowledge of early human development is limited, hampering application of cell-based therapies. Here we profiled 5 distinct cell types at a single fetal stage, as well as chondrocytes at 4 stages in vivo and 2 stages during in vitro differentiation. Network analysis delineated five tissue-specific gene modules; these modules and chromatin state analysis defined broad similarities in gene expression during cartilage specification and maturation in vitro and in vivo, including early expression and progressive silencing of muscle- and bone-specific genes.

View Article and Find Full Text PDF

Unlabelled: Osteoarthritis (OA), the most common form of arthritis, is characterized by inflammation of joints and cartilage degradation leading to disability, discomfort, severe pain, inflammation, and stiffness of the joint. It has been shown that adenosine, a purine nucleoside composed of adenine attached to ribofuranose, is enzymatically produced by the human synovium. However, the functional significance of adenosine signaling in homeostasis and pathology of synovial joints remains unclear.

View Article and Find Full Text PDF

The physis is a well-established and anatomically distinct cartilaginous structure that is crucial for normal long-bone development and growth. Abnormalities in physis function are linked to growth plate disorders and other pediatric musculoskeletal diseases. Understanding the molecular pathways operative in the physis may permit development of regenerative therapies to complement surgically-based procedures that are the current standard of care for growth plate disorders.

View Article and Find Full Text PDF