Engineering of materials consisting of hypertrophic cartilage, as physiological template for de novo bone formation through endochondral ossification (ECO), holds promise as a new class of biological bone substitutes. Here, we assessed the efficiency and reproducibility of bone formation induced by the combination of ceramic granules with fractionated human adipose tissue ("nanofat"), followed by in vitro priming to hypertrophic cartilage. Human nanofat was mixed with different volumetric ratios of ceramic granules (0.
View Article and Find Full Text PDFCell Transplant
September 2017
Bone nonunion is a pathological condition in which all bone healing processes have stopped, resulting in abnormal mobility between 2 bone segments. The incidence of bone-related injuries will increase in an aging population, leading to such injuries reaching epidemic proportions. Tissue engineering and cell therapy using mesenchymal stem cells (MSCs) have raised the possibility of implanting living tissue for bone reconstruction.
View Article and Find Full Text PDFAims: To understand better the control of insulin secretion by human β cells and to identify similarities to and differences from rodent models.
Methods: Dynamic insulin secretion was measured in perifused human islets treated with pharmacological agents of known modes of action.
Results: Glucokinase activation (Ro28-1675) lowered the glucose threshold for stimulation of insulin secretion to 1 mmol/L (G1), augmented the response to G3-G5 but not to G8-G15, whereas tolbutamide remained active in G20, which indicates that not all K channels were closed by high glucose concentrations.
Aim: Adipose-derived stem cells (ASC) are currently proposed for wound healing in those with type 2 diabetes mellitus (T2DM). Therefore, this study investigated the impact of diabetes on adipose tissue in relation to ASC isolation, proliferation, and growth factor release and the impact of hyperglycemia and low oxygen tension (found in diabetic wounds) on dermal fibroblasts, keratinocytes, and ASC in vitro.
Methods: Different sequences of hypoxia and hyperglycemia were applied in vitro to ASC from nondiabetic (n = 8) or T2DM patients (n = 4) to study cell survival, proliferation, and growth factor release.
Stem Cells Transl Med
November 2016
Unlabelled: : It is important to standardize methods to quantify the purity of adipose tissue-derived cells for regenerative medicine. We developed a simple and robust tool to discriminate fibroblasts and adipose stem cells (ASCs) by testing release of specific growth factors. ASCs and dermal fibroblasts (DFs) were isolated from human donors (n = 8).
View Article and Find Full Text PDFLong bone nonunion in the context of congenital pseudarthrosis or carcinologic resection (with intercalary bone allograft implantation) is one of the most challenging pathologies in pediatric orthopedics. Autologous cancellous bone remains the gold standard in this context of long bone nonunion reconstruction, but with several clinical limitations. We then assessed the feasibility and safety of human autologous scaffold-free osteogenic 3-dimensional (3D) graft (derived from autologous adipose-derived stem cells [ASCs]) to cure a bone nonunion in extreme clinical and pathophysiological conditions.
View Article and Find Full Text PDFA lack of oxygen is classically described as a major cause of impaired wound healing in diabetic patients. Even if the role of oxygen in the wound healing process is well recognized, measurement of oxygen levels in a wound remains challenging. The purpose of the present study was to assess the value of electron paramagnetic resonance (EPR) oximetry to monitor pO2 in wounds during the healing process in diabetic mouse models.
View Article and Find Full Text PDFBased on immunomodulatory, osteogenic, and pro-angiogenic properties of adipose-derived stem cells (ASCs), this study aims to assess the safety and efficacy of ASC-derived cell therapies for clinical indications. Two autologous ASC-derived products were proposed to 17 patients who had not experienced any success with conventional therapies: (1) a scaffold-free osteogenic three-dimensional graft for the treatment of bone non-union and (2) a biological dressing for dermal reconstruction of non-healing chronic wounds. Safety was studied using the quality control of the final product (genetic stability, microbiological/mycoplasma/endotoxin contamination) and the in vivo evaluation of adverse events after transplantation.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
October 2015
The biphasic pattern of glucose-induced insulin secretion is altered in type 2 diabetes. Impairment of the first phase is an early sign of β-cell dysfunction, but the underlying mechanisms are still unknown. Their identification through in vitro comparisons of islets from diabetic and control subjects requires characterization and quantification of the dynamics of insulin secretion by normal islets.
View Article and Find Full Text PDFBackground: Nonhealing wounds are unable to integrate skin autografts by avascular and fibrotic dermal tissue. Adipose-derived stromal cells can improve the local environment of the wound bed by angiogenesis and immunomodulation. This work aimed to develop a biological dressing made of adipose-derived stromal cells onto a human acellular collagen matrix.
View Article and Find Full Text PDFBone allografts were used in our department since twenty-five years to reconstruct segmental bone loss and our data were retrospectively reviewed to assess the complications related to the use of a bone allograft. A consecutive series of 128 patients who received a bone allograft was analyzed. The minimal follow-up was 18 months.
View Article and Find Full Text PDFAlthough islet transplantation has demonstrated its potential use in treating type 1 diabetes, this remains limited by the need for daily immunosuppression. Islet encapsulation was then proposed with a view to avoiding any immunosuppressive regimen and related side effects. In order to obtain a standard clinical procedure in terms of safety and reproducibility, two important factors have to be taken into account: the encapsulation design (which determines the graft volume) and the implantation site.
View Article and Find Full Text PDFFor critical size bone defects and bone non-unions, bone tissue engineering using osteoblastic differentiated adipose mesenchymal stem cells (AMSCs) is limited by the need for a biomaterial to support cell transplantation. An osteoblastic three-dimensional autologous graft made of AMSCs (3D AMSC) was developed to solve this issue. This autograft was obtained by supplementing the osteoblastic differentiation medium with demineralized bone matrix.
View Article and Find Full Text PDFInsufficient oxygenation can limit the long-term survival of encapsulated islets in subcutaneous tissue. Transplantation of coencapsulated pig islets with adipose or bone marrow mesenchymal stem cells (AMSCs or BM-MSCs, respectively) was investigated with regard to implant vascularization, oxygenation, and diabetes correction in primates. The in vivo impact of MSCs on graft oxygenation and neovascularization was assessed in rats with streptozotocin (STZ)-induced diabetes that were subcutaneously transplanted with islets coencapsulated with AMSCs (n = 8) or BM-MSCs (n = 6).
View Article and Find Full Text PDFPig adipose mesenchymal stem cells (AMSCs) could be proposed for the improvement of bone substitute. However, these xenogenic cells retain a galactosyl (Gal) epitope that elicits xenorejection. Our work aims to use Gal-Knock-Out (Gal-KO) pig AMSCs to associate cellular immunomodulation, humoral down-elicitation of Gal-KO cells and osteogenic capacity of AMSCs.
View Article and Find Full Text PDFWorld J Gastroenterol
December 2012
Although allogeneic islet transplantation can successfully cure type 1 diabetes, it has limited applicability. For example, organs are in short supply; several human pancreas donors are often needed to treat one diabetic recipient; the intrahepatic site may not be the most appropriate site for islet implantation; and immunosuppressive regimens, which are associated with side effects, are often required to prolong survival of the islet graft. An alternative source of insulin-producing cells would therefore be of major interest.
View Article and Find Full Text PDFPig islets demonstrate significantly lower insulin secretion after glucose stimulation than human islets (stimulation index of ∼12 vs. 2 for glucose 1 and 15 mM, respectively) due to a major difference in β- and α-cell composition in islets (60% and 25% in humans and 90% and 8% in pigs, respectively). This leads to a lower rise in 3',5'-cyclic adenosine monophosphate (cAMP) in pig β-cells.
View Article and Find Full Text PDFWith this analysis we would like to raise some issues that emerge as a result of recent evolutions in the burgeoning field of human cells, tissues, and cellular and tissue-based product (HCT/P) transplantation, and this in the light of the current EU regulatory framework. This paper is intended as an open letter addressed to the EU policy makers, who will be charged with the review and revision of the current legislation. We propose some urgent corrections or additions to cope with the rapid advances in biomedical science, an extensive commercialization of HCT/Ps, and the growing expectation of the general public regarding the ethical use of altruistically donated cells and tissues.
View Article and Find Full Text PDFAllogeneic islet transplantation has proven difficult because organ shortages are recurrent, several pancreas donors are often needed to treat one diabetic recipient, and the intrahepatic site of islet implantation may not be the most appropriate site. Thus, another source of insulin-producing cells would be beneficial; and pigs represent a possible and viable source for obtaining such cells. Although the use of pig islet grafts appears to be difficult because of the species barrier, recent reports demonstrated that pig islet xenotransplantation can overcome the immunological barrier following strong immunosuppression and function successfully in primates for at least 6 months.
View Article and Find Full Text PDFAdipose tissue was only recently considered as a potential source of mesenchymal stem cells (MSCs) for bone tissue engineering. To improve the osteogenicity of acellular bone allografts, adipose MSCs (AMSCs) and bone marrow MSCs (BM-MSCs) at nondifferentiated and osteogenic-differentiated stages were investigated in vitro and in vivo. In vitro experiments demonstrated a superiority of AMSCs for proliferation (6.
View Article and Find Full Text PDFBiomaterials
September 2011
This study investigates the potential of bone marrow (BM-MSCs) versus adipose mesenchymal stem cells (AMSCs) to potentiate the oxygenation of encapsulated islets in a subcutaneous bioartificial pancreas. Oxygen pressures (inside subcutaneous implants) were followed in vivo (by electronic paramagnetic resonance) in non-diabetic/diabetic rats transplanted with encapsulated porcine islets or empty implants up to 4 weeks post-transplantation. After graft explantation, neoangiogenesis surrounding the implants was assessed by histomorphometry.
View Article and Find Full Text PDFBackground: We developed a composite scoring system to accurately assess pig islet function in pre-clinical primate studies.
Methods: Two scoring methods that have been clinically validated in human islet allotransplantation were tested in six non-diabetic and nine streptozotocin (STZ)-induced diabetic primates: (i) SUITO index=[1500 × fasting C-peptide (ng/ml)]/[fasting blood glucose (FBG, mg/dl) - 63] and (ii) CP/G ratio =[fasting C-peptide (ng/ml) × 100]/FBG (mg/dl). Both scores were analysed as a function of the β-cell mass of the native primate pancreas.
Background: This study assessed the capacity of alginate-encapsulated islets to reverse diabetes in a pig-to-primate model.
Methods: Adult pig islets were encapsulated in microcapsules implanted under the kidney capsule (n=4) or in a subcutaneous macrodevice (n=5) in diabetic primates. Fasting blood glucose (FBG), insulin, porcine C-peptide, glycosylated hemoglobin (HbA1C), and cellular and humoral responses were followed.
Objectives: The tumor-free margin in bone and soft-tissue cancer is a key factor for subsequent treatment. While flattening and shrinkage of specimens after formalin fixation have been described in breast cancer, there are no data for bone and soft tissue sarcoma. Fixation could interfere with the accuracy of the assessment of the tumor-free margin.
View Article and Find Full Text PDFIslet encapsulation requires several properties including (1) biocompatibility, (2) immunoprotection, and (3) oxygen diffusion for islet survival and diabetes correction. New chemical alginates were tested in vivo and compared with traditional high-mannuronate and -guluronate alginates. New alginates with coupled peptide sequence (sterile lyophilized high mannuronate [SLM]-RGD3% and sterile lyophilized high guluronate [SLG]-RGD3%), to improve encapsulated cell adherence in the matrix, and alginates with a very low viscosity (VLDM7% and VLDG7%), to reduce implant size by loading a higher number of islets per volume of polymer, were implanted subcutaneously in 70 Wistar rats for comparison with alginates of high viscosity and high content of mannuronic (SLM3%) or guluronic acids (SLG3%).
View Article and Find Full Text PDF