Systemic lupus erythematosus (SLE) affects 1 in 537 Black women, which is >2-fold more than White women. Black patients develop the disease at a younger age, have more severe symptoms, and have a greater chance of early mortality. We used a multiomics approach to uncover ancestry-associated immune alterations in patients with SLE and healthy controls that may contribute biologically to disease disparities.
View Article and Find Full Text PDFCurrent technologies do not allow predicting interactions between histone post-translational modifications (HPTMs) at a system-level. We describe a computational framework, imputation-followed-by-inference, to predict directed association between two HPTMs using EpiTOF, a mass cytometry-based platform that allows profiling multiple HPTMs at a single-cell resolution. Using EpiTOF profiles of >55,000,000 peripheral mononuclear blood cells from 158 healthy human subjects, we show that neural processes (NP) have significantly higher accuracy than linear regression and nearest neighbors models to impute the abundance of an HPTM.
View Article and Find Full Text PDFBackground And Aims: Current understanding of histone post-translational modifications [histone modifications] across immune cell types in patients with inflammatory bowel disease [IBD] during remission and flare is limited. The present study aimed to quantify histone modifications at a single-cell resolution in IBD patients during remission and flare and how they differ compared to healthy controls.
Methods: We performed a case-control study of 94 subjects [83 IBD patients and 11 healthy controls].
Predicting the severity of COVID-19 remains an unmet medical need. Our objective was to develop a blood-based host-gene-expression classifier for the severity of viral infections and validate it in independent data, including COVID-19. We developed a logistic regression-based classifier for the severity of viral infections and validated it in multiple viral infection settings including COVID-19.
View Article and Find Full Text PDFViral infections induce a conserved host response distinct from bacterial infections. We hypothesized that the conserved response is associated with disease severity and is distinct between patients with different outcomes. To test this, we integrated 4,780 blood transcriptome profiles from patients aged 0 to 90 years infected with one of 16 viruses, including SARS-CoV-2, Ebola, chikungunya, and influenza, across 34 cohorts from 18 countries, and single-cell RNA sequencing profiles of 702,970 immune cells from 289 samples across three cohorts.
View Article and Find Full Text PDFDNA mismatch repair (MMR) corrects replication errors and is recruited by the histone mark H3K36me3, enriched in exons of transcriptionally active genes. To dissect the mutational landscape shaped by these processes, we employed single-cell exome sequencing on T cells of wild-type and MMR-deficient () mice. Within active genes, we uncovered a spatial bias in MMR efficiency: 3' exons, often H3K36me3-enriched, acquire significantly fewer MMR-dependent mutations compared with 5' exons.
View Article and Find Full Text PDFBlood vascular endothelial cells (BECs) control the immune response by regulating blood flow and immune cell recruitment in lymphoid tissues. However, the diversity of BEC and their origins during immune angiogenesis remain unclear. Here we profile transcriptomes of BEC from peripheral lymph nodes and map phenotypes to the vasculature.
View Article and Find Full Text PDFSingle-cell transcriptomics promise to revolutionize our understanding of the vasculature. Emerging computational methods applied to high-dimensional single-cell data allow integration of results between samples and species and illuminate the diversity and underlying developmental and architectural organization of cell populations. Here, we illustrate these methods in the analysis of mouse lymph node (LN) lymphatic endothelial cells (LEC) at single-cell resolution.
View Article and Find Full Text PDFHigh-dimensional single cell profiling coupled with computational modeling is emerging as a powerful tool to elucidate developmental programs directing cell lineages. We introduce tSpace, an algorithm based on the concept of "trajectory space", in which cells are defined by their distance along nearest neighbor pathways to every other cell in a population. Graphical mapping of cells in trajectory space allows unsupervised reconstruction and exploration of complex developmental sequences.
View Article and Find Full Text PDFLymphatic vessels form a critical component in the regulation of human health and disease. While their functional significance is increasingly being recognized, the comprehensive heterogeneity of lymphatics remains uncharacterized. Here, we report the profiling of 33,000 lymphatic endothelial cells (LECs) in human lymph nodes (LNs) by single-cell RNA sequencing.
View Article and Find Full Text PDFWestern-style diets (WD) high in fat and scarce in fiber and vitamin D increase risks of colorectal cancer. Here, we performed a long-term diet study in mice to follow tumorigenesis and characterize structural and metabolic changes in colon mucosa associated with WD and predisposition to colorectal cancer. WD increased colon tumor numbers, and mucosa proteomic analysis indicated severe deregulation of intracellular bile acid (BA) homeostasis and activation of cell proliferation.
View Article and Find Full Text PDFHuman epidemiological evidence and previous studies on mice have shown that Western-style diet (WD) may predispose gut mucosa to colorectal cancer (CRC). The mechanisms that mediate the effects of diet on tumorigenesis are largely unknown. To address putative cancer-predisposing events available for early detection, we quantitatively analyzed the proteome of histologically normal colon of a wild-type (Mlh1(+/+)) and an Mlh1(+/-) mouse after a long-term feeding experiment with WD and AIN-93G control diet.
View Article and Find Full Text PDF