Shortly after the first case of SARS-CoV-2 was diagnosed a public health emergency (PHE) was declared and a multi-agency response was initiated within the US federal government to create and propagate testing capacity. As part of this response, an unprecedented program designated Rapid Acceleration of Diagnostics (RADx) Tech was established by the National Institutes of Health (NIH) to facilitate the development of point-of-care tests for the COVID-19. The RADx Tech Clinical Studies Core (CSC), located at the University of Massachusetts Chan Medical School (UMass Chan), with partnering academic, private, and non-governmental organizations around the country, was tasked with developing clinical studies to support this work.
View Article and Find Full Text PDFAs we commemorate the 70 Anniversary of the National Heart, Lung, and Blood Institute (NHLBI) and celebrate important milestones that have been achieved by the Division of Cardiovascular Sciences (DCVS), it is imperative that DCVS and the Extramural Research community at-large continue to address critical public health challenges that persist within the area of Cardiovascular Diseases (CVD). The NHLBI's Strategic Vision, developed with extensive input from the extramural research community and published in 2016, included overarching goals and strategic objectives that serve to provide a general blueprint for sustaining the legacy of the Institute by leveraging opportunities in emerging scientific areas (e.g.
View Article and Find Full Text PDFValue-Based Healthcare: Summit 2014 clearly achieved the three goals set forth at the beginning of this document. First, the live event informed and educated attendees through a discussion of the evolving value-based healthcare environment, including a collaborative effort to define the important role of cardiovascular ultrasound in that environment. Second, publication of these Summit proceedings in the Journal of the American Society of Echocardiography will inform a wider audience of the important insights gathered.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
March 2010
Nanotechnology is poised to have an increasing impact on cardiovascular health in coming years. Diagnostically, multiplexed point-of-care devices will enable rapid genotyping and biomarker measurement to optimize and tailor therapies for the individual patient. Nanoparticle-based molecular imaging agents will take advantage of targeted agents to provide increased insight into disease pathways rather then simply providing structural and functional information.
View Article and Find Full Text PDFNanotechnology provides a broad range of opportunities to develop new solutions for clinical problems. For the pulmonary field, nanotechnology promises better delivery of drugs and nucleic acid-based therapeutics to disease sites. Administration of therapeutics via inhalation provides the opportunity for direct delivery to the lung epithelium, the lining of the respiratory tract.
View Article and Find Full Text PDFExpert Rev Mol Diagn
March 2007
Heart, lung and blood diseases exert an enormous toll, accounting for almost half of the deaths in the USA each year. In addition to the morbidity and mortality resulting from these diseases, there is also a high economic burden, estimated at 560 billion US dollars for 2006. Nanotechnology offers a broad range of opportunities to improve diagnosis and therapy for cardiovascular, pulmonary and hematopoietic diseases, thereby decreasing these burdens.
View Article and Find Full Text PDFNanotechnology offers a broad range of opportunities for improving the diagnosis and therapy for heart, lung and blood diseases, and drug delivery represents an area of particular promise. For cardiovascular disease, the treatment of atherosclerotic plaque and prevention of restenosis following stent placement offer attractive targets for nanotechnology. In lung disease, nanotechnology may provide novel treatments for a broad range of intractable pulmonary diseases, including bacterial biofilms, fungal infections, and tuberculosis.
View Article and Find Full Text PDFUpon encountering an antigen, motile T cells stop crawling, change morphology and ultimately form an 'immunological synapse'. Although myosin motors are thought to mediate various aspects of this process, the molecules involved and their exact roles are not defined. Here we show that nonmuscle myosin heavy chain IIA, or MyH9, is the only class II myosin expressed in T cells and is associated with the uropod during crawling.
View Article and Find Full Text PDFAlthough myosin II is known to play an important role in cell migration, little is known about its specific functions. We have addressed the function of one of the isoforms of myosin II, myosin IIB, by analyzing the movement and mechanical characteristics of fibroblasts where this protein has been ablated by gene disruption. Myosin IIB null cells displayed multiple unstable and disorganized protrusions, although they were still able to generate a large fraction of traction forces when cultured on flexible polyacrylamide substrates.
View Article and Find Full Text PDFRecent rapid advances in nanotechnology and nanoscience offer a wealth of new opportunities for diagnosis and therapy of cardiovascular, pulmonary, and hematologic diseases and sleep disorders. To review the challenges and opportunities offered by these nascent fields, the National Heart, Lung, and Blood Institute convened a Working Group on Nanotechnology. Working Group participants discussed the various aspects of nanotechnology and its applications to heart, lung, blood, and sleep (HLBS) diseases.
View Article and Find Full Text PDFRAW 264.7 macrophages express nonmuscle myosin heavy chain II-A as the only significant nonmuscle myosin heavy chain isoform, with expression of nonmuscle myosin heavy chain II-B and II-C low or absent. Treatment of the cells with sodium butyrate, an inhibitor of histone deacetylase, led to the dose-dependent induction of nonmuscle myosin heavy chain II-C.
View Article and Find Full Text PDF