We propose a reliable method for stabilizing narrow linewidth Brillouin fiber lasers with non-resonant pumping. Mode-hopping is suppressed by means of a phase-locked loop that locks the pump-Stokes detuning to a local radio-frequency (RF) oscillator. Stable single-mode operation of a 110-m-long Brillouin fiber laser oscillating at 1.
View Article and Find Full Text PDFThanks to an all solid core photonic crystal fiber (PCF) used as a multicore fiber, we propose and experimentally demonstrate what is to our knowledge a new optical detection scheme for the spontaneous emission collection of cold atoms. A Magneto-Optical Trap (MOT) is placed in front of a polished PCF end-face. As they display a higher optical index than the surrounding cladding silica, the 108 rods (equivalent to a 108 pixels camera) of this PCF are light guiding and behave like an array of detectors.
View Article and Find Full Text PDFThanks to a double-frequency phase modulation scheme, we report a vector Brillouin optical time-domain analyzer (BOTDA). This BOTDA has a high immunity level to noise, and it features a phase spectrogram capability. It is well suited for complex situations involving several acoustic resonances, such as high-order longitudinal modes.
View Article and Find Full Text PDFWe report what we believe to be a novel experimental heterodyne technique for the spectral analysis of continuous optical wave sources. The achieved resolution is as low as the kilohertz level, with a dynamic range in excess of 90 dB. The technique is based on a heterodyne detection between the source under test (SUT) and a Brillouin fiber laser generated by this SUT.
View Article and Find Full Text PDF