Cerebral accumulation of amyloid-β (Aβ) initiates molecular and cellular cascades that lead to Alzheimer's disease (AD). However, amyloid deposition does not invariably lead to dementia. Amyloid-positive but cognitively unaffected (AP-CU) individuals present widespread amyloid pathology, suggesting that molecular signatures more complex than the total amyloid burden are required to better differentiate AD from AP-CU cases.
View Article and Find Full Text PDFAberrant protease activity has been implicated in the etiology of various prevalent diseases including neurodegeneration and cancer, in particular metastasis. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has recently been established as a key technology for bioanalysis of multiple biomolecular classes such as proteins, lipids, and glycans. However, it has not yet been systematically explored for investigation of a tissue's endogenous protease activity.
View Article and Find Full Text PDFRecent advances in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry have enabled whole cell-MALDI mass spectrometry biotyping of drug-treated cultured cells for rapid monitoring of known abundant pharmacodynamic protein markers such as polyacetylated histones. In contrast, generic and automated analytical workflows for discovery of such pharmacodynamic markers, in particular lipid markers, and their use in cellular tests of drug-like compounds are still lacking. Here, we introduce such a workflow and demonstrate its utility for cellular drug-response monitoring of BCR-ABL tyrosine kinase inhibitors in K562 leukemia cells: First, low-molecular mass features indicating drug responses are computationally extracted from groups of MALDI-TOF mass spectra.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFMultimodal imaging combines complementary platforms for spatially resolved tissue analysis that are poised for application in life science and personalized medicine. Unlike established clinical in vivo multimodality imaging, automated workflows for in-depth multimodal molecular ex vivo tissue analysis that combine the speed and ease of spectroscopic imaging with molecular details provided by mass spectrometry imaging (MSI) are lagging behind. Here, we present an integrated approach that utilizes non-destructive Fourier transform infrared (FTIR) microscopy and matrix assisted laser desorption/ionization (MALDI) MSI for analysing single-slide tissue specimen.
View Article and Find Full Text PDFPhospholipids have excellent biocompatibility and are therefore often used as main components of liposomal drug carriers. In traditional bioanalytics, the in-vivo distribution of liposomal drug carriers is assessed using radiolabeled liposomal constituents. This study presents matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) as an alternative, label-free method for ex-vivo molecular imaging of liposomal drug carriers in mouse tissue.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
July 2017
On-slide digestion of formalin-fixed and paraffin-embedded human biopsy tissue followed by mass spectrometry imaging of resulting peptides may have the potential to become an additional analytical modality in future ePathology. Multiple workflows have been described for dewaxing, antigen retrieval, digestion and imaging in the past decade. However, little is known about suitable statistical scores for method comparison and systematic workflow standardization required for development of processes that would be robust enough to be compatible with clinical routine.
View Article and Find Full Text PDF