The cell-surface receptor protein tyrosine phosphatase mu (PTPmu) is a homophilic cell adhesion molecule expressed in CNS neurons and glia. Glioblastomas (GBMs) are the highest grade of primary brain tumors with astrocytic similarity and are characterized by marked dispersal of tumor cells. PTPmu expression was examined in human GBM, low-grade astrocytoma, and normal brain tissue.
View Article and Find Full Text PDFGlyoxalase I (GLOI) is the first enzyme of the glyoxalase system that catalyzes the metabolism of reactive dicarbonyls, such as methylglyoxal (MGO). During aging and cataract development, human lens proteins are chemically modified by MGO, which is likely due to inadequate metabolism of MGO by the glyoxalase system. In this study, we have determined the effect of aging on GLOI activity and the immunoreactivity and morphological distribution of GLOI in the human lens.
View Article and Find Full Text PDFThe receptor protein tyrosine phosphatase PTPmu belongs to a family of adhesion molecules that contain cell-cell adhesion motifs in their extracellular segments and catalytic domains within their intracellular segments. The ability of PTPmu both to mediate adhesion and exhibit enzymatic activity makes PTPmu an excellent candidate to transduce signals in response to cell-cell adhesion. In an effort to identify downstream signaling partners of PTPmu, we performed a modified yeast two-hybrid screen using the first tyrosine phosphatase domain of PTPmu as bait.
View Article and Find Full Text PDFMembers of the receptor protein tyrosine phosphatase (RPTP) subfamily of cell adhesion molecules (CAMs) mediate neurite outgrowth and growth cone repulsion. PTPmu is a growth permissive substrate for nasal retinal ganglion cell (RGC) neurites and a growth inhibitory substrate for temporal RGCs. In this manuscript, we demonstrate that the distinct PTPmu-dependent phenotypes of nasal outgrowth and temporal repulsion are regulated by Rho GTPases.
View Article and Find Full Text PDFInhibition of protein-tyrosine phosphatases (PTPs) counterbalancing protein-tyrosine kinases (PTKs) offers a strategy for augmenting PTK actions. Conservation of PTP catalytic sites limits development of specific PTP inhibitors. A number of receptor PTPs, including the leukocyte common antigen-related (LAR) receptor and PTPmu, contain a wedge-shaped helix-loop-helix located near the first catalytic domain.
View Article and Find Full Text PDFThe receptor protein-tyrosine phosphatase PTPmu is a member of the Ig superfamily of cell adhesion molecules. The extracellular domain of PTPmu contains motifs commonly found in cell adhesion molecules. The intracellular domain of PTPmu contains two conserved catalytic domains, only the membrane-proximal domain has catalytic activity.
View Article and Find Full Text PDF