Embryonic stem cells have the distinct potential for tissue regeneration, including cardiac repair. Their propensity for multilineage differentiation carries, however, the liability of neoplastic growth, impeding therapeutic application. Here, the tumorigenic threat associated with embryonic stem cell transplantation was suppressed by cardiac-restricted transgenic expression of the reprogramming cytokine TNF-alpha, enhancing the cardiogenic competence of recipient heart.
View Article and Find Full Text PDFSepsis, the systemic inflammatory response to infection, imposes a high demand for bodily adaptation, with the cardiovascular response a key determinant of outcome. The homeostatic elements that secure cardiac tolerance in the setting of the sepsis syndrome are poorly understood. Here, in a model of acute septic shock induced by endotoxin challenge with Escherichia coli lipopolysaccharide (LPS), knockout of the KCNJ8 gene encoding the vascular Kir6.
View Article and Find Full Text PDFHeart failure is a growing epidemic, with systemic hypertension a major risk factor for development of disease. However, the molecular determinants that prevent the transition from a state of hypertensive load to that of overt cardiac failure remain largely unknown. Here in experimental hypertension, knockout of the KCNJ11 gene, encoding the Kir6.
View Article and Find Full Text PDFThe mitotic capacity of heart muscle is too limited to fully substitute for cells lost following myocardial infarction. Emerging stem cell-based strategies have been proposed to overcome the self-renewal shortfall of native cardiomyocytes, yet there is limited evidence for their capability to achieve safe de novo cardiogenesis and repair. We present our recent experience in treating long-term, infarcted hearts with embryonic stem cells, a prototype source for allogenic cell therapy.
View Article and Find Full Text PDFCardiac ATP-sensitive K(+) (K(ATP)) channels, gated by cellular metabolism, are formed by association of the inwardly rectifying potassium channel Kir6.2, the potassium conducting subunit, and SUR2A, the ATP-binding cassette protein that serves as the regulatory subunit. Kir6.
View Article and Find Full Text PDFMetabolic-sensing ATP-sensitive K+ channels (KATP channels) adjust membrane excitability to match cellular energetic demand. In the heart, KATP channel activity has been linked to homeostatic shortening of the action potential under stress, yet the requirement of channel function in securing cardiac electrical stability is only partially understood. Here, upon catecholamine challenge, disruption of KATP channels, by genetic deletion of the pore-forming Kir6.
View Article and Find Full Text PDFAbnormal expression of human myotonic dystrophy protein kinase (hDMPK) gene products has been implicated in myotonic dystrophy type 1 (DM1), yet the impact of distress accumulation produced by persistent overexpression of this poorly understood member of the Rho kinase-related protein kinase gene-family remains unknown. Here, in the aged transgenic murine line carrying approximately 25 extra copies of a complete hDMPK gene with all exons and an intact promoter region (Tg26-hDMPK), overexpression of mRNA and protein transgene products in cardiac, skeletal and smooth muscles resulted in deficient exercise endurance, an integrative index of muscle systems underperformance. In contrast to age-matched (11-15 months) wild-type controls, hearts from Tg26-hDMPK developed cardiomyopathic remodeling with myocardial hypertrophy, myocyte disarray and interstitial fibrosis.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2004
Conventional therapies for myocardial infarction attenuate disease progression without contributing significantly to repair. Because of the capacity for de novo cardiogenesis, embryonic stem cells are considered a potential source for myocardial regeneration, yet limited information is available on their ultimate therapeutic value. We treated infarcted rat hearts with CGR8 embryonic stem cells preexamined for cardiogenicity, serially probed left ventricular function, and determined final pathological outcome.
View Article and Find Full Text PDFStress tolerance of the heart requires high-fidelity metabolic sensing by ATP-sensitive potassium (K(ATP)) channels that adjust membrane potential-dependent functions to match cellular energetic demand. Scanning of genomic DNA from individuals with heart failure and rhythm disturbances due to idiopathic dilated cardiomyopathy identified two mutations in ABCC9, which encodes the regulatory SUR2A subunit of the cardiac K(ATP) channel. These missense and frameshift mutations mapped to evolutionarily conserved domains adjacent to the catalytic ATPase pocket within SUR2A.
View Article and Find Full Text PDFTransmission of energetic signals to membrane sensors, such as the ATP-sensitive K+ (KATP) channel, is vital for cellular adaptation to stress. Yet, cell compartmentation implies diffusional hindrances that hamper direct reception of cytosolic energetic signals. With high intracellular ATP levels, KATP channels may sense not bulk cytosolic, but rather local submembrane nucleotide concentrations set by membrane ATPases and phosphotransfer enzymes.
View Article and Find Full Text PDFMitochondrial integrity is critical in the maintenance of bioenergetic homeostasis of the myocardium, with oxidative or metabolic challenge to mitochondria precipitating cell injury. In heart failure, where cardiac cells are exposed to elevated stress, mitochondrial vulnerability could contribute to the disease state. However, the mitochondrial response to stress is yet to be established in heart failure.
View Article and Find Full Text PDFATP-sensitive potassium (K(ATP)) channels are required for maintenance of homeostasis during the metabolically demanding adaptive response to stress. However, in disease, the effect of cellular remodeling on K(ATP) channel behavior and associated tolerance to metabolic insult is unknown. Here, transgenic expression of tumor necrosis factor alpha induced heart failure with typical cardiac structural and energetic alterations.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2003
Although ischemic preconditioning induces bioenergetic tolerance and thereby remodels energy metabolism that is crucial for postischemic recovery of the heart, the molecular components associated with preservation of cellular energy production, transfer, and utilization are not fully understood. Here myocardial bioenergetic dynamics were assessed by (18)O-assisted (31)P-NMR spectroscopy in control or preconditioned hearts from wild-type (WT) or Kir6.2-knockout (Kir6.
View Article and Find Full Text PDFMembers of the transforming growth factor beta1 (TGF-beta) superfamily--namely, TGF-beta and BMP2--applied to undifferentiated murine embryonic stem cells up-regulated mRNA of mesodermal (Brachyury) and cardiac specific transcription factors (Nkx2.5, MEF2C). Embryoid bodies generated from stem cells primed with these growth factors demonstrated an increased potential for cardiac differentiation with a significant increase in beating areas and enhanced myofibrillogenesis.
View Article and Find Full Text PDFReaction to stress requires feedback adaptation of cellular functions to secure a response without distress, but the molecular order of this process is only partially understood. Here, we report a previously unrecognized regulatory element in the general adaptation syndrome. Kir6.
View Article and Find Full Text PDFActive pectoral pulse generators are used routinely for initial ICD placement because they reduce DFTs and simplify the implantation procedure. Despite the common use of these systems, little is known regarding the clinical predictors of defibrillation efficacy with active pulse generator lead configurations. Such predictors would be helpful to identify patients likely to require higher output devices or more complicated implantations.
View Article and Find Full Text PDFTransduction of metabolic signals is essential in preserving cellular homeostasis. Yet, principles governing integration and synchronization of membrane metabolic sensors with cell metabolism remain elusive. Here, analysis of cellular nucleotide fluxes and nucleotide-dependent gating of the ATP-sensitive K+ (K(ATP)) channel, a prototypic metabolic sensor, revealed a diffusional barrier within the submembrane space, preventing direct reception of cytosolic signals.
View Article and Find Full Text PDFFundamental to the metabolic sensor function of ATP-sensitive K(+) (K(ATP)) channels is the sulfonylurea receptor. This ATP-binding cassette protein, which contains nucleotide binding domains (NBD1 and NBD2) with conserved Walker motifs, regulates the ATP sensitivity of the pore-forming Kir6.2 subunit.
View Article and Find Full Text PDF