The cell death field has profited from the increasing attention of the scientific community and has been shown to lie at the very basis of cancer initiation and progression. Cuproptosis is a recently proposed method of cell death in 2022, and it is different from any previously reported method. The principle is that copper ions lead to aggregation and instability of intracellular proteins.
View Article and Find Full Text PDFIn recent years, the use of arsenic trioxide (ATO) in the context of ovarian cancer chemotherapy has attracted significant attention. However, ATO's limited biocompatibility and the occurrence of severe toxic side effects hinder its clinical application. A nanoparticle (NP) drug delivery system using ATO as a therapeutic agent is reported in this study.
View Article and Find Full Text PDFBoth chemodynamic therapy and photodynamic therapy, based on the production of reactive oxygen (ROS), have excellent potential in cancer therapy. However, the abnormal redox homeostasis in tumor cells, especially the overexpressed glutathione (GSH) could scavenge ROS and reduce the anti-tumor efficiency. Therefore, it is essential to develop a simple and effective tumor-specific drug delivery system for modulating the tumor microenvironment (TME) and achieving synergistic therapy at the tumor site.
View Article and Find Full Text PDFEffective drug delivery is essential for cancer treatment. Drug delivery systems, which can be tailored to targeted transport and integrated tumor therapy, are vital in improving the efficiency of cancer treatment. Peptides play a significant role in various biological and physiological functions and offer high design flexibility, excellent biocompatibility, adjustable morphology, and biodegradability, making them promising candidates for drug delivery.
View Article and Find Full Text PDFBacterial infections pose a huge threat to human health due to the inevitable emergency of drug resistance. Metal-organic frameworks (MOFs) consisting of metal ions and organic linkers, as emerging efficient antibacterial material, have the merits of structural flexibility and adjustable physicochemical property. With assistance of photosensitive agents as organic linkers, MOFs have great potential in antibacterial application through photocatalytic therapy by the generation of reactive oxygen species (ROS).
View Article and Find Full Text PDFChemodynamic therapy (CDT) has aroused extensive attention as a potent therapeutic modality. However, its practical application is severely restricted by the strong acidity requirement for Fenton reaction and upregulated antioxidant defense within metastatic breast cancer. Herein, a copper-based single-site nanocatalyst functionalized with carbonic anhydrase inhibitor (CAI) was constructed for magnetic resonance/photoacoustic imaging (MRI/PA)-guided synergetic photothermal therapy (PTT) and CDT.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
Cancer is still one of the major diseases that humans have not conquered yet. Nanotechnology has promoted the development of multifunctional nanoparticles, which integrate diagnostic and treatment abilities for tumor imaging and therapy. However, its preparation methods usually require complicated unit operations, which result in large batch-to-batch differences, poor reproducibility, high production costs, and difficulty in clinical transformation.
View Article and Find Full Text PDFTo overcome biological barriers for nanoparticles (NPs) efficaciously accumulated at tumor sites, as well as enhancing the performance of drug delivery systems, a carrier-free nanoparticle based on charge reversal is designed for improved synergetic chemo-phototherapy for cancer treatment. In this system, doxorubicin (Dox) and zinc phthalocyanine (ZnPc) are self-assembled through noncovalent interactions (π-π stacking, hydrophobic forces) to avoid the possible toxicity of excipient, complex chemical conjugations and batch-to-batch variation. A trace amount of poly(2-(di-methylamino) ethylmethacrylate)- poly[(R)-3-hydroxybutyrate]- poly(2-(dimethylamino) ethylmethacrylate (PDMAEMA-PHB-PDMAEMA) is modified on the surface of Dox-ZnPc to construct the novel nanoparticles, namely DZP, with long-term stability, and with a dual-drug load content of up to ≈90%.
View Article and Find Full Text PDFCarrier-free nanotheranostics with high drug loading and no carrier-related toxicity are highly promising cancer therapy agents. However, the limited tumor accumulation and poorly controlled drug release of these nanotheranostics continue to be major challenges that restrict clinical applications. In this study, we develop a tumor-recognizing carrier-free nanotheranostic with light/reactive oxygen species (ROS) cascade-responsiveness for spatiotemporally selective photo-chemotherapy.
View Article and Find Full Text PDFSize reduction of drug with poor water solubility to nanoscale is an effective way to help improve the efficacy of drug delivery to the human body. A solid hollow fiber cooling crystallization technique has been adopted to continuously produce griseofulvin drug nanoparticles under modest conditions with accurate controllability. In the solid hollow fiber cooling crystallization device, drug solution flowed through the bores of solid hollow fibers while the cooling liquid was circulated counter-currently in the shell side of the device to cool down the drug solution in the tube side.
View Article and Find Full Text PDFBecause of high drug payload and minimized burden of foreign materials in the course of metabolism and excretion, carrier-free nanomedicine based on self-assembly of small-molecule therapeutic agents has attracted considerable attention in cancer therapy. However, obstacles still remained, such as lack of targeting efficiency, poor physiological stability, and serious drug burst release. Herein, we developed a self-dual-targeting prodrug conjugate by coupling methotrexate (MTX) and doxorubicin (DOX) to a hyaluronic acid (HA) backbone which enveloped the small molecular drug coassemblies of DOX and indocyanine green for specific targeting and imaging-guided chemo-photothermal therapy (PTT).
View Article and Find Full Text PDFThe current research process in gene therapy for cancer treatment has brought much attention due to its great potential for both inherited and acquired diseases. Precise accumulation in target site and on-demand release of drug is critical factors for the efficient gene therapy. Since the delivery of suitable gene largely depends on the delivery carrier, the design of suitable gene delivery vehicle for the sustained gene release in target site are attracting increasingly interest among the researchers.
View Article and Find Full Text PDFCombination cancer therapy with various kinds of therapeutic approaches could improve the effectiveness of treatment while reducing side effects. Herein, we elaborately developed a theranostics nanoplatform based on magnetic polydopamine (MPDA) coated with hyaluronic acid-methotrexate conjugates (MPDA@HA-MTX) for chemo-photothermal treatment (PTT). In this nanoplatform, FeO served as the core was applied as contrast agent for T-weighted magnetic resonance imaging (MRI) and early phase magnet targeting.
View Article and Find Full Text PDFFor the purpose of precision theranostic of tumor, multifunctional drug delivery systems are always receiving great attentions. Here, we developed a zinc phthalocyanine-soybean phospholipid (ZnPc-SPC) complex based drug delivery system with doxorubicin (Dox) as loading cargo to achieve additional chemotherapy while the carrier itself could serve as multifunctional and switchable theranostic agent. In the early phase, the ZnPc-SPC complex assembled to nanostructure displaying photothermal therapy (PTT) and photoacoustic (PA) properties while in the late phase, the prepared NPs dis-assembled into ZnPc-SPC complex again performing photodynamic therapy (PDT) and low-background fluorescence (FL) image.
View Article and Find Full Text PDFPurpose: This work was intended to develop novel doxorubicin (DOX)/zinc (II) phthalocyanine (ZnPc) co-loaded mesoporous silica (MSNs)@ calcium phosphate (CaP)@PEGylated liposome nanoparticles (NPs) that could efficiently achieve collaborative anticancer therapy by the combination of photodynamic therapy (PDT) and chemotherapy. The interlayer of CaP could be utilized to achieve pH-triggered controllable drug release, promote the cellular uptake, and induce cell apoptosis to further enhance the anticancer effects.
Methods: MSNs were first synthesized as core particles in which the pores were diffusion-filled with DOX, then the cores were coated by CaP followed by the liposome encapsulation with ZnPc to form the final DOX/ZnPc co-loaded MSNs@CaP@PEGylated liposome.
The novel drug delivery system based on self-assembly of zinc phthalocyanine-soybean phosphatidylcholine (ZnPc-SPC) complex was developed by a co-solvent method followed by a nanoprecipitaion technique. DSPE-PEG-methotrexate (DSPE-PEG-MTX) was introduced on the surface of ZnPc-SPC self-assembled nanoparticles (ZS) to endow them with folate receptor-targeting property. NMR, XRD, FTIR, and UV-vis-NIR analysis demonstrated the weak molecular interaction between ZnPc and SPC.
View Article and Find Full Text PDF"All-in-one" carrier-free-based nano-multi-drug self-delivery system could combine triple advantages of small molecules, nanoscale characteristics, and synergistic combination therapy together. Researches have showed that dual-acting small-molecular methotrexate (MTX) could target and kill the folate-receptor-overexpressing cancer cells. Inspired by this mechanism, a novel collaborative early-phase tumor-selective targeting and late-phase synergistic anticancer approach was developed for the self-assembly of chemotherapeutic drug-drug conjugate, which showed various advantages of more simplicity, efficiency, and flexibility over the conventional approach based only on single or combination cancer chemotherapy.
View Article and Find Full Text PDFMultimodal imaging-guided synergistic combination therapy has shown great potential for cancer treatment. However, the nanocarrier-based theranostic systems suffer from batch-to-batch variation, complexity of multicomponent, poor drug loading, and carrier-related toxicity issues. To address these issues, herein we developed a novel carrier-free theranostic system with nanoscale characteristics for near-infrared fluorescence (NIRF) and photoacoustic (PA) dual-modal imaging-guided synergistic chemo-photothermal therapy (PTT).
View Article and Find Full Text PDFMultimodal imaging-guided multistage targeted synergistic combination therapy possesses many advantages including increased tumoricidal effect, reduced toxicity, and retarded drug resistance. Herein, we have elaborately developed a core-interlayer-shell structure FeO@mSiO@lipid-PEG-methotrexatenanoparticle(FMLM), in which the FeO core could be used for magnet-stimulate-response drug release, magnetic resonance imaging, and early-phase magnet targeting ability; the mSiO layer could encapsulate anticancer drug doxorubicin (Dox) for chemotherapy; and the protective shell of lipid-PEG and lipid-PEG-methotrexate offered later-phase specific cellular targeting ability, good water dispersibility, and loading of photosensitizer zinc phthalocyanine (ZnPc) for simultaneous near-infrared fluorescence imaging and photodynamic therapy. Both in vitro and in vivo studies indicated that the both Dox and ZnPc-loaded FMLM (Dox/ZnPc-FMLM) exhibited the enhanced tumor accumulation, increased cellular uptake, improved anticancer activity, and weaked side effects compared with Dox/ZnPc-FeO@mSiO@lipid-PEG nanoparticle (Dox/ZnPc-FML) and free drug.
View Article and Find Full Text PDFBackground: Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry.
View Article and Find Full Text PDFA facile way to continuously coat drug crystals with a polymer is needed in controlled drug release. Conventional polymer coating methods have disadvantages: high energy consumption, low productivity, batch processing. A novel method for continuous polymer coating of drug crystals based on solid hollow fiber cooling crystallization (SHFCC) is introduced here.
View Article and Find Full Text PDFUsing porous hollow fiber membranes, this study illustrates a novel technique to continuously synthesize polymer-coated drug crystals by antisolvent crystallization. The synthesized polymer-coated drug crystals involve crystals of the drug Griseofulvin (GF) coated by a thin layer of the polymer Eudragit RL100. The process feed, an acetone solution of the drug GF containing the dissolved polymer, was passed through the shell side of a membrane module containing many porous hollow fibers of Nylon-6.
View Article and Find Full Text PDFContinuous polymer coating of nanoparticles is of interest in many industries such as pharmaceuticals, cosmetics, food, and electronics. Here we introduce a polymer coating/precipitation technique to achieve a uniform and controllable nanosize polymer coating on nanoparticles in a continuous manner. The utility of this technique is demonstrated by coating Aerosil silica nanoparticles (SNPs) of diameter 12 nm with the polymer Eudragit RL 100.
View Article and Find Full Text PDF