Publications by authors named "Dengxin Dai"

The progress on Hyperspectral image (HSI) super-resolution (SR) is still lagging behind the research of RGB image SR. HSIs usually have a high number of spectral bands, so accurately modeling spectral band interaction for HSI SR is hard. Also, training data for HSI SR is hard to obtain so the dataset is usually rather small.

View Article and Find Full Text PDF

Motion prediction is crucial for autonomous driving systems to understand complex driving scenarios and make informed decisions. However, this task is challenging due to the diverse behaviors of traffic participants and complex environmental contexts. In this paper, we propose Motion TRansformer (MTR) frameworks to address these challenges.

View Article and Find Full Text PDF

Unsupervised domain adaptation (UDA) and domain generalization (DG) enable machine learning models trained on a source domain to perform well on unlabeled or even unseen target domains. As previous UDA&DG semantic segmentation methods are mostly based on outdated networks, we benchmark more recent architectures, reveal the potential of Transformers, and design the DAFormer network tailored for UDA&DG. It is enabled by three training strategies to avoid overfitting to the source domain: While (1) Rare Class Sampling mitigates the bias toward common source domain classes, (2) a Thing-Class ImageNet Feature Distance and (3) a learning rate warmup promote feature transfer from ImageNet pretraining.

View Article and Find Full Text PDF

Humans can robustly recognize and localize objects by using visual and/or auditory cues. While machines are able to do the same with visual data already, less work has been done with sounds. This work develops an approach for scene understanding purely based on binaural sounds.

View Article and Find Full Text PDF

With the advent of deep learning, many dense prediction tasks, i.e., tasks that produce pixel-level predictions, have seen significant performance improvements.

View Article and Find Full Text PDF

We address the problem of semantic nighttime image segmentation and improve the state-of-the-art, by adapting daytime models to nighttime without using nighttime annotations. Moreover, we design a new evaluation framework to address the substantial uncertainty of semantics in nighttime images. Our central contributions are: 1) a curriculum framework to gradually adapt semantic segmentation models from day to night through progressively darker times of day, exploiting cross-time-of-day correspondences between daytime images from a reference map and dark images to guide the label inference in the dark domains; 2) a novel uncertainty-aware annotation and evaluation framework and metric for semantic segmentation, including image regions beyond human recognition capability in the evaluation in a principled fashion; 3) the Dark Zurich dataset, comprising 2416 unlabeled nighttime and 2920 unlabeled twilight images with correspondences to their daytime counterparts plus a set of 201 nighttime images with fine pixel-level annotations created with our protocol, which serves as a first benchmark for our novel evaluation.

View Article and Find Full Text PDF

Exemplar-based dynamic texture synthesis (EDTS) is targeted to generate new samples of high quality that are perceptually similar to a given input dynamic texture exemplar. This paper addresses the issue of learning the synthesizability of dynamic texture samples. Given a dynamic texture sample, how is its possibility of being synthesized by EDTS methods estimated, and what is the most suitable EDTS algorithm to complete the task? To this end, we propose associating dynamic texture samples with synthesizability scores by learning regression models on a compiled dynamic texture dataset annotated in terms of synthesizability.

View Article and Find Full Text PDF

Domain adaptation between diverse source and target domains is challenging, especially in the real-world visual recognition tasks where the images and videos consist of significant variations in viewpoints, illuminations, qualities, etc. In this paper, we propose a new approach for domain generalization and domain adaptation based on exemplar SVMs. Specifically, we decompose the source domain into many subdomains, each of which contains only one positive training sample and all negative samples.

View Article and Find Full Text PDF

We introduce the hierarchical Markov aspect model (HMAM), a computationally efficient graphical model for densely labeling large remote sensing images with their underlying terrain classes. HMAM resolves local ambiguities efficiently by combining the benefits of quadtree representations and aspect models-the former incorporate multiscale visual features and hierarchical smoothing to provide improved local label consistency, while the latter sharpen the labelings by focusing them on the classes that are most relevant for the broader local image context. The full HMAM model takes a grid of local hierarchical Markov quadtrees over image patches and augments it by incorporating a probabilistic latent semantic analysis aspect model over a larger local image tile at each level of the quadtree forest.

View Article and Find Full Text PDF