Publications by authors named "Dengmiao Cheng"

The exploration of sediment pollution caused by PAHs and its impact on microbial communities can provide valuable insights for the remediation of sediments. The spatial distribution of PAHs and their impact on the microbial community within the Pearl River Estuary were investigated in this study. The findings revealed that the total concentration ranges of 16 PAHs were between 24.

View Article and Find Full Text PDF

Particles are ubiquitous and abundant in natural waters and play a crucial role in the fate and bioavailability of organic pollution. In the present study, natural mineral (kaolinites, KL), organic (humic/fulvic acid, HA/FA) and their composite particles were further separated into particles fractions (PFs, >1 μm) and colloidal fractions (CFs, 1 kDa-1 μm) by cross-flow ultrafiltration (CFUF). This research demonstrated the role of kaolinite-humic composite colloids on the adsorption of fluoroquinolone norfloxacin (NOR).

View Article and Find Full Text PDF

Antibiotic resistomes in leaf endophytes of vegetables threaten human health through the food chain. However, little is known about the ability of long-term manure fertilization to impact the deep selection of antibiotic resistance genes (ARGs) in leaf endophytes of vegetables planted in different types of soils. Here, by high-throughput quantitative PCR, we characterized the ARGs of leaf endophytes of Chinese cabbage (Brassica pekinensis (Lour.

View Article and Find Full Text PDF

Using high-throughput quantitative PCR and next generation sequencing, the impact of land application of raw and composted gentamicin fermentation waste (GFW) on antibiotic resistance genes (ARGs) in maize seeds was studied in a three-year field trial. The raw and composted GFW changed both the bacterial community composition and the ARGs diversity in the maize seeds compared to non-amended controls and chemical fertilizer. The abundance of ARGs after raw GFW amendment was significantly higher than other treatments because of a high abundance of aadA1, qacEdeltal and aph(2')-Id-02; probably induced by gentamicin selection pressure in maize tissues.

View Article and Find Full Text PDF

A meta-analysis of 94 published studies was conducted to explore the impacts of farmland application of antibiotic-contaminated manures on antibiotic concentrations and ARG abundances in manure-amended soil. Forty-nine antibiotics were reported, in which chlortetracycline, oxytetracycline, doxycycline, tetracycline, enrofloxacin, ciprofloxacin and norfloxacin were the most prevalent and had relatively high concentrations. The responses of ARG and mobile genetic element (MGE) abundances to farmland application of antibiotic-contaminated manures varied considerably under different management strategies and environmental settings.

View Article and Find Full Text PDF

Here, we investigated the impact of different turning frequency (TF) on dynamic changes of N fractions, NH emission and bacterial/archaeal community during chicken manure composting. Compared to higher TF (i.e.

View Article and Find Full Text PDF

Herein, we reported a tandem multilevel reactive electrochemical membrane (REM) system was promising for the rapid and complete removal of trace antibiotics from natural waters. Results indicate that a four-stage REM module-in-series system achieved steady over 98% removal of model antibiotic norfloxacin (NOR, 100 μg·L) from wastewater treatment plant final effluent and surface water with a residence time of 5.4 s, and the electric energy consumption was only around 0.

View Article and Find Full Text PDF

Over a three-year field trial, the impacts of composted and raw gentamicin fermentation waste (GFW) application to land on residual soil gentamicin levels, physicochemical properties, bacterial community composition, and antibiotic resistance genes (ARGs) were assessed. In the saline-alkali soil tested, GFW application decreased electrical conductivity (EC) and pH. Importantly, there was no measurable long-term accumulation of gentamicin as a result of GFW addition.

View Article and Find Full Text PDF

Animal manure fertilization facilitates the proliferation and dissemination of antibiotic resistance genes (ARGs) in soil, posing high risks to humans and ecosystem health. Although studies suggest that soil types could shape the ARG profiles in greenhouse soil, there is still a lack of comparative studies on the fate of ARGs in different types of manured soils under field trials. Thus, a metagenomic approach was used to decipher the fate of ARGs in 12-year long-term fertilized (inorganic fertilizer, compost manure and a mix of them) acidic, near-neutral and alkaline soils.

View Article and Find Full Text PDF

Natural colloidal particles (NCPs), which are ubiquitous and abundant in surface waters, may play a crucial role in the sunlight-driven transformation of organic contaminants. This research focused on the effects of NCPs on the photodegradation of two fluoroquinolone antibiotics (FQs), ofloxacin (OFL) and ciprofloxacin (CIP), and assessed the photosensitivity of colloidal organic matter (COM). Results showed that the photodegradation rate constants (k) of OFL and CIP in NCP solutions ranged from 9.

View Article and Find Full Text PDF

This study for the first time investigated the advanced treatment of bio-treated landfill leachate effluent using a novel reactive electrochemical membrane (REM) technology at the laboratory and pilot scales. At the laboratory scale, RuO-Ir-REM, TiO-REM, and β-PbO-REM featured similar properties in pore size and water flux. Although RuO-Ir-REM holds more reactive sites than the other two REMs, β-PbO-REM and TiO-REM featured higher oxidation ability than RuO-Ir-REM, causing their high yield of hydroxyl radical.

View Article and Find Full Text PDF

The dynamics of oxytetracycline (OTC), sulfamerazine (SM1), ciprofloxacin (CIP) and related antibiotic resistance genes (ARGs) during swine manure composting were compared between manure collected from swine fed a diet containing these three antibiotics (T) and manure directly spiked with these drugs (T). The composting removal efficiency of OTC (94.9 %) and CIP (87.

View Article and Find Full Text PDF

Animal manure containing veterinary antibiotics is a significant source of microbial antibiotic resistance genes (ARGs). Composting of animal manure with wheat straw and sawdust was explored as a means to reduce ARGs load in the final material. The effects of ciprofloxacin, oxytetracycline, sulfamerazine on the bacterial community composition, and how this then affected the removal of seven tetracycline resistance genes (TARGs), four sulfonamide resistance genes (SARGs), and two fluoroquinolone resistance genes (QARGs) were investigated.

View Article and Find Full Text PDF

This research focuses on the effects of the composting process on oxytetracycline antibiotic degradation and the bioavailability of arsenic and copper. A compost experiment was conducted using cow and pig manure contaminated with oxytetracycline, and copper and arsenic salts. The changes in physicochemical properties, oxytetracycline concentration, and the germination index were measured.

View Article and Find Full Text PDF

The application and fate of antibiotics are closely related to human health and the ecological balance, which has gradually aroused the widespread global concerns. Long-term antibiotic residues can easily induce antibiotic resistance and antibiotic resistance genes (ARGs) in the environment. Although many studies have investigated the metabolic pathways of biosynthesis or degradation of oxytetracycline (OTC) and its influencing factors under laboratory or controlled conditions, the understanding of OTC degradation pathways and influencing factors in the environment is still poor.

View Article and Find Full Text PDF

Frequently detected residuals of antibiotics in crops has drawn increasing attention from research community and the general public. This study was conducted under the controlled environmental conditions to investigate the uptake, translocation and distribution of three different veterinary antibiotics (VAs) in plants of Zea mays L. (maize, the third largest crop in the world, especially in China) and the associated mechanisms.

View Article and Find Full Text PDF

There are many reports indicating that biochar can promote growth; however, its mechanism of action remains unclear. The aim of this study was to show that organic molecules from biochar-extracted liquor affect the growth of rice seedlings. In this study, rice seedlings were cultured under water.

View Article and Find Full Text PDF

Understanding the dynamics of veterinary antibiotic and related antibiotic resistance genes (ARGs) during swine manure composting is crucial in assessing the environmental risk of antibiotics, which could effectively reduce their impact in natural environments. This study investigated the dissipation of oxytetracycline (OTC), sulfamerazine (SM1) and ciprofloxacin (CIP) as well as the behaviour of their corresponding ARGs during swine manure composting. These antibiotics were added at two concentration levels and two different methods of addition (single/mixture).

View Article and Find Full Text PDF

Understanding the effect of natural colloidal particles (NCPs) on the photochemistry of organic pollutants is crucial to predict the environmental persistence and fate of them in surface waters, and it is, yet, scarcely elucidated. In this study, the pre-filtered surface water (through a 1 μm capsule filter) from Baiyangdian Lake was further separated into four different size NCPs: F1 (0.65-1.

View Article and Find Full Text PDF

Dynamics in bacterial community composition, along with 13 antibiotic resistance genes (ARGs) and eight mobile genetic elements (MGEs), were assessed during co-composting with gentamicin and lovastatin fermentation residue (GFR and LFR, respectively). Using next generation sequencing, the key bacterial taxa associated with the different stages of composting were identified. Most importantly, Bacillus, belonging to Phylum Firmicutes, was associated with enhanced degradation of gentamicin, decomposition of organic matter (OM) and dissolved organic carbon (DOC), and also extension of the thermophilic phase of the composting cycle.

View Article and Find Full Text PDF

Understanding antibiotic adsorption in livestock manures is crucial to assess the fate and risk of antibiotics in the environment. In this study, three quantitative models developed with swine manure-water distribution coefficients (LgK) for oxytetracycline (OTC), ciprofloxacin (CIP) and sulfamerazine (SM1) in swine manures. Physicochemical parameters (n=12) of the swine manure were used as independent variables using partial least-squares (PLSs) analysis.

View Article and Find Full Text PDF

Gentamicin, a broad spectrum antibiotic of the aminoglycoside class, is widely used for disease prevention of human beings as well as animals. Nowadays the environmental issue caused by the disposal of wastes containing gentamicin attracts increasing attention. In this study, a gentamicin degrading bacterial consortia named AMQD4, including Providencia vermicola, Brevundimonas diminuta, Alcaligenes sp.

View Article and Find Full Text PDF

An indoor co-composting of gentamicin fermentation residues (GFR) and lovastatin fermentation residues (LFR) inoculated with gentamicin-degrading Aspergillus terreus FZC3 was conducted to remove gentamicin residues. The results showed that treatment MFZC3, consisting of a 10:1 blend of GFR and LFR (w/w), had the longest thermophilic phase (7days), quickest gentamicin degradation (t=4.4days), and relatively higher gentamicin degradation percentage (96.

View Article and Find Full Text PDF

Understanding antibiotic adsorption on natural colloids is crucial for prediction of the behavior, bioavailability and toxicity of antibiotics in natural waters. In the present study, the filtered water (dissolved phase, <0.7μm) was further separated into colloidal phase (1kDa-0.

View Article and Find Full Text PDF