Publications by authors named "Dengle Duan"

With the growing emphasis on green chemistry and the ecological environment, researchers are increasingly paying attention to greening materials through the use of carbon-based solid acids. The diverse characteristics of carbon-based solid acids can be produced through different preparation conditions and modification methods. This paper presents a comprehensive summary of the current research progress on carbon-based solid acids, encompassing common carbonization methods, such as one-step, two-step, hydrothermal, and template methods.

View Article and Find Full Text PDF

Security utilization measures (SUMs) for "production while remediating" in moderate and mild Cd-polluted paddy fields had been widely used. To investigate how SUMs drove rhizosphere soil microbial communities and reduced soil Cd bioavailability, a field experiment was conducted using soil biochemical analysis and 16S rRNA high-throughput sequencing. Results showed that SUMs improved rice yield by increasing the number of effective panicles and filled grains, while also inhibiting soil acidification and enhancing disease resistance by improving soil enzyme activities.

View Article and Find Full Text PDF

Ovalbumin (OVA) is one of major allergens of hen egg white with excellent nutritional and processing properties. Previous research exhibits that pulsed electric field (PEF) treatment could partially unfold OVA. This may contribute to the improvement of OVA phosphorylation.

View Article and Find Full Text PDF

Recovery of value-added fuels or chemicals from waste plastics by pyrolysis is a promising way to eliminate the waste plastics accumulation and alleviate the energy crisis, while developing efficient catalysts of high durability remains a challenge. Herein, activated carbon spheres of various surface chemistry were fabricated and subsequently used in ex-situ catalytic pyrolysis of low-density polyethylene to produce jet fuel and gasoline-ranged hydrocarbons. Experiment results indicate that with the increase of activation time and temperature, the acidity of activated carbon increased slightly owning to the oxygen-containing functional groups increased, and the specific surface area reached the maximum value (707 m/g) at the activation condition of 800℃ for 60 min.

View Article and Find Full Text PDF

Zeolite and activated carbon (AC) have been demonstrated as promising and facile catalysts in degrading biomass into high-value added chemicals and bio-fuels, while the effects of combining zeolite and AC on the catalytic degradation of biomass have not been well understood. Here, co-catalytic pyrolysis of corncob over HZSM-5 and AC to produce aromatic-rich bio-oils was investigated for the first time. The effects of HZSM-5/AC ratio, pyrolysis temperature and catalyst/corncob ratio on products yields and components were explored.

View Article and Find Full Text PDF

This study reports the synthesis of a SiC-MCM41 composite catalyst by a microwave-assisted hydrothermal process and the composite catalyst had the characteristics of MCM41 and SiC, and the surface of SiC grew evenly with a layer of MCM41 after characterization of the catalysts by various means (X-ray diffraction, Brunauer-Emmett-Teller, scanning electron microscopy). The catalyst was applied in the pyrolysis of waste oil to investigate how it influences the bio-oil component proportion compared with no catalyst, only SiC, only MCM41 catalysis and the catalytic effect was also investigated at different temperatures and different catalyst to feed ratios. In a downdraft system with a pyrolysis temperature of 550 °C, a catalyst to feed ratio of 1 : 2, and a catalytic temperature of 400 °C, 32.

View Article and Find Full Text PDF

The current study aims to investigate the effects of agricultural waste-derived activated carbon catalyst on the jet-fuel range hydrocarbons distribution from raw biomass pyrolysis under the hydrogen donor condition provided by a solid waste. Ex-situ catalytic fast co-pyrolysis of lignin with and without soapstock was carried out using the corn stover-derived activated carbon catalyst in a facile fixed bed reactor. Results showed that the soapstock, as the hydrogen donor, exhibited a positive synergistic effect with lignin on enhancing the production of valuable aromatics in the obtained bio-oil.

View Article and Find Full Text PDF

Catalytic fast pyrolysis (CFP) of torrefied corn cob using Ni-modified hierarchical ZSM-5 catalyst was conducted in this study. The prepared catalysts were characterized by N adsorption and desorption (N-BET), X-ray diffraction (XRD), and temperature-programmed desorption of NH (NH-TPD). NaOH solution treatment resulted in the lower peak intensities of hierarchical ZSM-5 catalyst in the XRD patterns while Ni modification improved the catalyst framework.

View Article and Find Full Text PDF

Fast microwave-assisted co-pyrolysis of pretreated bamboo sawdust and soapstock was conducted. The pretreatment process was carried out under microwave irradiation. The effects of microwave irradiation temperature, irradiation time, and concentration of hydrochloric acid on product distribution from co-pyrolysis and the relative contents of the major components in bio-oil were investigated.

View Article and Find Full Text PDF

Molybdenum phosphide-based catalysts have recently exhibited excellent catalytic activities for the hydrogen evolution reaction (HER) in wide pH range conditions; the intrinsic reaction mechanism, on the other hand, has not been well established. Herein, by employing the MoP as the prototypical molybdenum phosphide-based catalyst, HER activities in both acid and neutral conditions were studied by conducting periodic density functional theory calculations. Thermodynamic analysis of hydrogen atoms absorbed on both P- and Mo-terminated surfaces were compared, as well as all the reaction energy and activation energy barriers for reactions involved in the HER process.

View Article and Find Full Text PDF

Fast microwave-assisted catalytic co-pyrolysis of Chromolaena odorata (C. odorata) and soybean soapstock with HZSM-5 as an ex-situ catalyst was investigated. Effects of catalytic temperature, feedstock: catalyst ratio and C.

View Article and Find Full Text PDF

The co-pyrolysis of pretreated lignin and soapstock was carried out to upgrade vapors under microwave irradiation. Results showed that the yield of 29.92-42.

View Article and Find Full Text PDF

This study performed microwave-assisted acid pretreatment on pure lignin. The effects of microwave temperature, microwave time, and hydrochloric acid concentration on characteristics and pyrolysis behavior of lignin were examined. Results of ultimate analysis revealed better properties of all pretreated samples than those of raw lignin.

View Article and Find Full Text PDF

The ex-catalytic co-pyrolysis of bamboo and polypropylene (PP) with HZSM-5 was investigated with microwave assistance. The influences of catalytic temperature, feedstock/catalyst ratio, and bamboo/PP ratio on the product yields and chemical components of bio-oil from the co-pyrolysis were studied. When the catalytic temperature, feedstock/catalyst ratio, and bamboo/PP ratio were 250 °C, 1:2, and 2:1, respectively, the bio-oil yield reached its maximum value at 61.

View Article and Find Full Text PDF

In the present study, the effect of temperature and residence time during microwave hydrothermal pretreatment (MHT) on hydrochar properties and pyrolysis behaviors was investigated. Experimental results indicated that higher heating value (HHV) and fixed carbon content gradually increased with increased pretreatment severity. Obvious reduction of oxygen content was found under MHT at 230°C-15min and 210°C-35min.

View Article and Find Full Text PDF

Microwave-assisted fast co-pyrolysis of lignin and polypropylene for bio-oil production was conducted using the ex-situ catalysis technology. Effects of catalytic temperature, feedstock/catalyst ratio, and lignin/polypropylene ratio on product distribution and chemical components of bio-oil were investigated. The catalytic temperature of 250°C was the most conducive to bio-oil production in terms of the yield.

View Article and Find Full Text PDF

Combined with high-performance liquid chromatography (HPLC) and linear-ion trap/Orbitrap high-resolution mass spectrometry, trypsin-catalyzed (16)O-to-(18)O exchange was used to establish an accurate quantitative method for bovine or porcine gelatin. The sophisticated modifications for these two mammalian gelatins were unambiguously identified by accurate mass and tandem mass spectrometry. Eighteen marker peptides were successfully identified for the bovine and porcine gelatin, respectively.

View Article and Find Full Text PDF