Publications by authors named "Denghui Pan"

Sodium metal has emerged as a highly promising anode material for sodium-based batteries, owing to its intrinsic advantages, including its high theoretical capacity, low working plateau and low cost. However, the uncontrolled formation of sodium dendrites accompanied by unrestricted volume expansion severely limits its application. To tackle these issues, we propose an approach to address these issues by adopting a three-dimensional (3D) structure of TiCT/reduced graphene oxide (TiCT/rGO) constructed by a direct-ink writing (DIW) 3D printing technique as the Na metal anode host electrode.

View Article and Find Full Text PDF

In mode-locked fiber lasers, the formation of ultrashort pulses from noisy or unstable states is a crucial area of research. Investigating these complex nonlinear dynamics can lead to valuable insights and new practical engineering techniques, particularly for the design and optimization of optical systems. Time-stretch dispersive Fourier transform, utilized in our study to investigate dissipative solitons formation in a net-normal dispersion nonlinear polarization evolution mode-locked fiber laser, provides a window into the intricate dynamics of such systems.

View Article and Find Full Text PDF

Sodium metal anode, featured by favorable redox voltage and material availability, offers a feasible avenue toward high-energy-density devices. However, uneven metal deposition and notorious dendrite proliferation synchronously hamper its broad application prospects. Here, a three-dimensional (3D) porous hierarchical silver/reduced graphene oxide (Ag/rGO) microlattice aerogel is devised as a sodiophilic monolith, which is realized by a direct ink writing 3D printing technology.

View Article and Find Full Text PDF