Publications by authors named "Dengbao Han"

Direct assembly of high-quality single-crystal perovskite microarrays on transparent conductive substrates and carrier injection layers is vital to realize high-performance optoelectronic devices. Although cubic-phase CsPbBr is considered to have a higher structural and optical quality than the orthorhombic one, obtaining a well-aligned assembly directly on the aforementioned substrates is still challenging. Here we developed a solvent-assisted crystallization strategy with the assistance of surface modifiers, through which the in situ low-temperature growth of well-aligned cubic single-crystal CsPbBr microarray with a preferential out-of-plane [100] orientation is achieved for the first time on commercial transparent conductive substrates.

View Article and Find Full Text PDF

In the field of perovskite light-emitting diodes (PeLEDs), the performance of blue emissive electroluminescence devices lags behind the other counterparts due to the lack of fabrication methodology. Herein, we demonstrate the in situ fabrication of CsPbClBr nanocrystal films by using mixed ligands of 2-phenylethanamine bromide (PEABr) and 3,3-diphenylpropylamine bromide (DPPABr). PEABr dominates the formation of quasi-two-dimensional perovskites with small-n domains, while DPPABr induces the formation of large-n domains.

View Article and Find Full Text PDF

Perovskite quantum dots (PQDs) are emerging as functional luminescence down-shifting materials for light conversion applications. The incorporation of PQDs into a polymeric matrix is a key step to improving their stability, thus facilitating device integration. Compared to the conventional way of mixing the pre-synthesized PQDs into a polymer, the in situ fabrication of perovskite quantum dots-embedded composite films (PQDCFs) is an efficient and cost-effective method, which yields enhanced photoluminescence properties.

View Article and Find Full Text PDF

In this paper, we reported the in situ fabrication of highly luminescent formamidinium lead bromide (FAPbBr) nanocrystal thin films by dropping toluene as an anti-solvent during the spin-coating with a perovskite precursor solution using 3,3-diphenylpropylamine bromide (DPPA-Br) as a ligand. The resulting films are uniform and composed of 5-20 nm FAPbBr perovskite nanocrystals. By monitoring the solvent mixing of anti-solvent and precursor solution on the substrates, we illustrated the difference between the ligand-assisted reprecipitation (LARP) process and the nanocrystal-pinning (NCP) process.

View Article and Find Full Text PDF

The use of interfacial modifiers on cathode or anode layers can effectively reduce the recombination loss and thus have potential to enhance the device performance of polymer solar cells. In this work, we demonstrated that hydroxyl-terminated CuInS-based quantum dots could be potential cathode interfacial modifiers on ZnO layer for inverted polymer solar cells. By casting of a thin film of CuInS-based quantum dots onto ZnO layer, the controlled devices show obvious enhancements of open-circuit voltage, short-circuit current, and fill factor.

View Article and Find Full Text PDF