Cepharanthine, a biscoclaurine alkaloid isolated from the roots of Hayata, has been reported to demonstrate antitumor activity across multiple cancer types; however, the mechanisms are still under investigation. High transcriptional responses by both the Hedgehog and Wnt pathways are frequently associated with specific human cancers, including liver cancer. To investigate whether these signaling pathways are involved in the pharmaceutical action of cepharanthine, we investigated Hedgehog and Wnt signaling in models of liver cancer treated with a semi‑synthetic cepharanthine derivative, cepharanthine hydrochloride (CH), and .
View Article and Find Full Text PDFBackground: A number of studies have found that metabolic disorders are the characteristic manifestations of tumor cells. However, the effects of hypoxic environment on mitochondrial function and glucose metabolism of tumor cells were still unclear. The study wanted to explore the regulatory mechanism of hypoxic environment on mitochondrial function and metabolism in gastric cancer cells.
View Article and Find Full Text PDFLactate has been observed to fuel TCA cycle and is associated with cancer progression in human lung cancer, the leading cause of cancer deaths worldwide, but the effect of lactate on lung cancer metabolism is rarely reported. In this study, disordered metabolism in non-small cell lung cancer was demonstrated by increased G6PD and SDHA protein levels immunofluorescence, and up-regulated lactate dehydrogenase was found to be associated with poor prognosis. Then flow cytometry and Seahorse XFe analyzer were utilized to detect the effect of lactate on glycolysis and mitochondrial function in non-small cell lung cancer cells.
View Article and Find Full Text PDF