Enterotoxigenic Escherichia coli causes severe infectious diarrhea with high morbidity and mortality in newborn and weanling pigs mainly through the production of heat-stable enterotoxins (STs). However, the precise regulatory mechanisms involved in ST-induced intestinal epithelium injury remain unclear. Consequently, we conducted the experiments in vivo (mice), ex vivo (mouse and porcine enteroids), and in vitro (MODE-K and IPEC-J2 cells) to explore the effect of STp (one type of STa) on the integrity of the intestinal epithelium.
View Article and Find Full Text PDFThe micronutrient, zinc, plays a vital role in modulating cellular signaling recognition and enhancing intestinal barrier function. However, the precise mechanisms underlying the zinc regulation of intestinal stem cell (ISC) renewal and regeneration ability, which drive intestinal epithelial turnover to maintain the intestinal barrier, under physiological and pathological conditions are unknown. In this study, we used in vivo mouse plus ex vivo enteroid model to investigate thoroughly the protection efficacy of zinc L-aspartate (Zn-Asp) on intestinal mucosal integrity exposed to deoxynivalenol (DON).
View Article and Find Full Text PDFHeat stress induced by continuous high ambient temperatures or strenuous exercise in humans and animals leads to intestinal epithelial damage through the induction of intracellular stress response. However, the precise mechanisms involved in the regulation of intestinal epithelial cell injury, especially intestinal stem cells (ISCs), remain unclear. Thereby, in vitro a confluent monolayer of IPEC-J2 cells was exposed to the high temperatures (39, 40, and 41°C), the IPEC-J2 cell proliferation, apoptosis, differentiation, and barrier were determined, as well as the expression of GRP78, which is a marker protein of endoplasmic reticulum stress (ERS).
View Article and Find Full Text PDFThe crypt-villus axis of the intestine undergoes a continuous renewal process that is driven by intestinal stem cells (ISCs). However, the homeostasis is disturbed under constant exposure to high ambient temperatures, and the precise mechanism is unclear. We found that both EdU and Ki67 cell ratios were significantly reduced after exposure to 41°C, as well as the protein synthesis rate of IPEC-J2 cells, and the expression of ubiquitin and heat shock protein 60, 70, and 90 were significantly increased.
View Article and Find Full Text PDF