Imposing topological operations encircling an exceptional point (EP) engenders unconventional one-way topological phonon transfer (TPT), strictly depending on the direction of EP-inclusive control loops and inherently limited to the small-mass regime of practical resonators. We here show how to beat these limitations and predict a mass-free unidirectional TPT by combining topological operations with the Fizeau light-dragging effect, which splits countercirculating optical modes. An efficient TPT happens when light enters from one chosen side of the fiber but not from the other, leading to a unique nonreciprocal TPT, independent of the direction of winding around the EP.
View Article and Find Full Text PDFEntanglement of light and multiple vibrations is a key resource for multichannel quantum information processing and memory. However, entanglement generation is generally suppressed, or even fully destroyed, by the dark-mode (DM) effect induced by the coupling of multiple degenerate or near-degenerate vibrational modes to a common optical mode. Here we propose how to generate optomechanical entanglement via DM breaking induced by synthetic magnetism.
View Article and Find Full Text PDFWe study the photon blockade effect in a coupled cavity system, which is formed by a linear cavity coupled to a Kerr-type nonlinear cavity via a photon-hopping interaction. We explain the physical phenomenon from the viewpoint of the conventional and unconventional photon blockade effects. The corresponding physical mechanisms of the two kinds of photon blockade effects are based on the anharmonicity in the eigenenergy spectrum and the destructive quantum interference between two different transition paths, respectively.
View Article and Find Full Text PDF