Publications by authors named "Deng-Feng Hu"

Phacoemulsification with implantation of intraocular lens (IOLs) has been widely applied as a standard treatment for cataract, which is the leading cause of vision impairment. However, it still remains a critical challenge to prevent posterior capsule opacification (PCO) in terms of postoperative visual quality. Herein, we report IOLs with mussel-inspired coatings for inhibiting lens epithelial cells and then preventing PCO through photothermal conversion effect.

View Article and Find Full Text PDF

Stiffening of blood vessels is one of the most important characteristics in the process of many cardiovascular pathologies such as atherosclerosis, angiosteosis, and vascular aging. Increased stiffness of the vascular extracellular matrix drives artery pathology and alters phenotypes of vascular cell. Understanding how substrate stiffness impacts vascular cell behaviors is of great importance to the biomaterial design in tissue engineering, regenerative medicine, and medical devices.

View Article and Find Full Text PDF

Inspired by nature, many functional surfaces have been developed with special structures in biology, chemistry, and materials. Many research studies have been focused on the preparation of surfaces with static structure. Achieving dynamical manipulation of surface structure is desired but still a great challenge.

View Article and Find Full Text PDF

Transition metal dichalcogenide (TMD) nanosheets have evoked enormous research enthusiasm and have shown increased potentials in the biomedical field. However, a great challenge lies in high-throughput, large-scale, and eco-friendly preparation of TMD nanosheet dispersions with high quality. Herein, we report a universal polyphenol-assisted strategy to facilely exfoliate various TMDs into monolayer or few-layer nanosheets.

View Article and Find Full Text PDF

Surface modification has been well recognized as a promising strategy to design and exploit diversified functional materials. However, conventional modification strategies usually suffer from complicated manufacture procedures and lack of universality. Herein, a facile, robust, and versatile approach is proposed to achieve the surface functionalization using dopamine and acrylate monomers via a one-step polymerization and codeposition process.

View Article and Find Full Text PDF