Conductive polymer foam (CPF) with excellent compressibility and variable resistance has promising applications in electromagnetic interference (EMI) shielding and other integrated functions for wearable electronics. However, its insufficient change amplitude of resistance with compressive strain generally leads to a degradation of shielding performance during deformation. Here, an innovative loading strategy of conductive materials on polymer foam is proposed to significantly increase the contact probability and contact area of conductive components under compression.
View Article and Find Full Text PDFIL-7 is a cytokine produced by stromal cells, which binds to IL-7Rα and plays an important role for homeostasis of T lymphocytes. Excessive activities of IL-7-triggered signaling pathways causes autoimmune diseases. How IL-7-triggered signaling and immune effects are regulated is not fully understood.
View Article and Find Full Text PDFHydrogen-isotope storage materials are essential for the controlled nuclear fusion. However, the currently used smelting-ZrCo alloy suffers from rapid degradation of performance due to severe disproportionation. Here, we reveal a defect-derived disproportionation mechanism and report a nano-single-crystal strategy to solve ZrCo's problems.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
Shape memory polymer (SMP)-based smart molds, which could provide high-resolution mold shape and morph in response to external stimuli for readily demolding the complex structure, attract extensive attention. However, the suitable SMP for smart molds is usually confined with low stretchability that likely causes damage during demolding. Herein, we present a cyanate ester smart composite (CESC) with a reconfigurable, solvent-processable, and near-infrared (NIR)-triggerable shape memory effect (SME), which enables the 2D sheet with a variety of morphed complex shapes through deformation in a mild situation.
View Article and Find Full Text PDFDesign of ligands in transition-metal catalyzed reactions is challenging, especially in asymmetric transformations. With each step in the catalytic cycle promoted by its privileged ligand and different steps well-connected by dynamic ligand exchange, synergistic combination of multiple ligands could potentially enhance the catalytic efficiency and selectivity. Now, this concept has been applied to the NiH-catalyzed asymmetric remote hydroacylation of olefins and migratory acylation of alkyl halides with excellent regio- and enantioselectivity, utilizing two simple ligands, one for chain-walking and the other for asymmetric acylation.
View Article and Find Full Text PDFStretchable conductive fibers are an important component of wearable electronic textiles, but often suffer from a decrease in conductivity upon stretching. The use of liquid metal (LM) droplets as conductive fillers in elastic fibers is a promising solution. However, there is an urgent need to develop effective strategies to achieve high adhesion of LM droplets to substrates and establish efficient electron transport paths between droplets.
View Article and Find Full Text PDFConductive hydrogels have potential applications in shielding electromagnetic (EM) radiation interference in deformable and wearable electronic devices, but usually suffer from poor environmental stability and stretching-induced shielding performance degradation. Although organohydrogels can improve the environmental stability of materials, their development is at the expense of reducing electrical conductivity and thus weakening EM interference shielding ability. Here, a MXene organohydrogel is prepared which is composed of MXene network for electron conduction, binary solvent channels for ion conduction, and abundant solvent-polymer-MXene interfaces for EM wave scattering.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2022
Interleukin-3 (IL-3) is a hematopoietic growth factor and critical regulator of inflammatory response such as sepsis. IL-3 binds to IL-3 receptor α (IL-3Rα), which is then associated with IL-3Rβ to initiate signaling. How IL-3-triggered physiological and pathological effects are regulated at the receptor level is unclear.
View Article and Find Full Text PDFBackground: CD8+ T cells, vital effectors pertaining to adaptive immunity, display close relationships to the immunization responses to kill tumor cells. Understanding the effect exerted by tumor infiltration CD8+ T cells in papillary renal cell carcinoma (papRCC) is critical for assessing the prognosis process and responses to immunization therapy in cases with this disease.
Materials And Approaches: The single-cell transcriptome data of papRCC were used for screening CD8+ T-cell-correlated differentially expressed genes to achieve the following investigations.
The IL-6-STAT3 axis is critically involved in inflammation-associated carcinogenesis (IAC). How this axis is regulated to modulate IAC remains unknown. Here, we show that the plasma membrane-associated E3 ubiquitin ligase MARCH3 negatively regulates STAT3 activation triggered by IL-6, as well as another IL-6 subfamily member, Oncostatin M (OSM).
View Article and Find Full Text PDFBackground: Renal tubular epithelial cells play an important role in renal function and are a major site of injury from inflammation. Emerging evidence suggests that CYR61 is involved in the regulation of autophagy. However, there are few studies on CYR61 in nephropathy and associated inflammation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
The proinflammatory cytokine IL-1β plays critical roles in inflammatory and autoimmune diseases. IL-1β signaling is tightly regulated to avoid excessive inflammatory response. In this study, we identified the E3 ubiquitin ligase membrane-associated RING-CH-type finger 3 (MARCH3) as a critical negative regulator of IL-1β-triggered signaling.
View Article and Find Full Text PDF