In solid-state lithium-ion batteries (SSLIBs), the fraction of active materials involved in electrode electrochemistry reduces with the increase of electrode thickness. Conventional wisdom suggests that the degree of reaction linearly decreases toward the current-collector as that in the lithium-ion batteries, which is, however, limited by the high difficulty of experimental capture of operando transport of charge & mass. Electrode dynamics simulations can provide space visualization but are usually based on assumed or simplified models.
View Article and Find Full Text PDFJ Xray Sci Technol
January 2025
Background: K-edge subtraction (KES) tomography has been extensively utilized in the field of elemental sensitive imaging due to its high spatial resolution, rapid acquisition, and three-dimensional (3D) imaging capabilities. However, previous studies have primarily focused on the qualitative analysis of element contents, rather than quantitative assessment.
Objective: The current study proposes a novel method for quantitative elemental analysis based on K-edge subtraction tomography.
Silencers, the yin to enhancers' yang, play a pivotal role in fine-tuning gene expression throughout the genome. However, despite their recognized importance, comprehensive identification of these regulatory elements in the genome is still in its early stages. We developed a method called Ss-STARR-seq to directly determine the activity of silencers in the whole genome.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
The interface issue poses a limitation on the fast charging of solid-state batteries (SSBs), with the high-impedance non-Faraday electric field serving as a pivotal factor. However, the mechanism of fast-charging capability degradation triggered by the dynamic evolution of non-Faraday electric fields remains unclear due to the lack of particle-scale nondestructive detection techniques. Here, we dissect the generation and elimination processes of non-Faradaic electric field in segments using the developed operando cryogenic transmission X-ray microscopy (Cryo-TXM).
View Article and Find Full Text PDFExisting deep learning-based RGB-T salient object detection methods often struggle with effectively fusing RGB and thermal features. Therefore, obtaining high-quality features and fully integrating these two modalities are central research focuses. We developed an illumination prior-based coefficient predictor (MICP) to determine optimal interaction weights.
View Article and Find Full Text PDFPolyethylene oxide (PEO) based electrolytes critically govern the security and energy density of solid-state batteries, but typically suffer from poor oxidation resistance at high voltages, which limits the energy density of batteries. Here, we report a Lewis-acid coordinated strategy to significantly improve the cyclic stability of 4.8 V-class PEO-based battery.
View Article and Find Full Text PDFEnhancers play a critical role in dynamically regulating spatial-temporal gene expression and establishing cell identity, underscoring the significance of designing them with specific properties for applications in biosynthetic engineering and gene therapy. Despite numerous high-throughput methods facilitating genome-wide enhancer identification, deciphering the sequence determinants of their activity remains challenging. Here, we present the DREAM (DNA cis-Regulatory Elements with controllable Activity design platforM) framework, a novel deep learning-based approach for synthetic enhancer design.
View Article and Find Full Text PDFThe aim of this study was to develop a medical imaging and comprehensive stacked learning-based method for predicting high- and low-risk thymoma. A total of 126 patients with thymomas and 5 patients with thymic carcinoma treated at our institution, including 65 low-risk patients and 66 high-risk patients, were retrospectively recruited. Among them, 78 patients composed the training cohort, while the remaining 53 patients formed the validation cohort.
View Article and Find Full Text PDFFull-field transmission X-ray microscopy (TXM) in conjunction with X-ray absorption near edge structure (XANES) spectroscopy provides two-dimensional (2D) or three-dimensional (3D) morphological and chemical-specific information within samples at the tens of nanometer scale. This technique has a broad range of applications in materials sciences and battery research. Despite its extensive applicability, 2D XANES imaging is subject to the disadvantage of information overlap when the sample thickness is uneven.
View Article and Find Full Text PDFBackground: The calmodulin (CaM) and calmodulin-like (CML) proteins play regulatory roles in plant growth and development, responses to biotic and abiotic stresses, and other biological processes. As a popular fruit and ornamental crop, it is important to explore the regulatory mechanism of flower and fruit development of passion fruit.
Results: In this study, 32 PeCaM/PeCML genes were identified from passion fruit genome and were divided into 9 groups based on phylogenetic analysis.
Curr Pain Headache Rep
November 2024
Purpose Of Review: Mindfulness therapy is a widely used treatment for many diseases and has been shown to improve pain-related functions. There is growing support for the use of psychotherapy in the treatment of chronic pain. While studies have shown a positive effect of mindfulness therapy, it is important to consider psychosocial factors as there are still a small number of studies that question its effectiveness.
View Article and Find Full Text PDFThe structural and chemical evolution of battery electrodes at the nanoscale plays an important role in affecting the cell performance. Nano-resolution X-ray microscopy has been demonstrated as a powerful technique for characterizing the evolution of battery electrodes under operating conditions with sensitivity to their morphology, compositional distribution and redox heterogeneity. In real-world batteries, the electrode could deform upon battery operation, causing challenges for the image registration which is necessary for several experimental modalities, e.
View Article and Find Full Text PDFSpeckle-tracking X-ray imaging is an attractive candidate for dynamic X-ray imaging owing to its flexible setup and simultaneous yields of phase, transmission and scattering images. However, traditional speckle-tracking imaging methods suffer from phase distortion at locations with abrupt changes in density, which is always the case for real samples, limiting the applications of the speckle-tracking X-ray imaging method. In this paper, we report a deep-learning based method which can achieve dynamic X-ray speckle-tracking imaging with high-accuracy phase retrieval.
View Article and Find Full Text PDFProper cell fate determination relies on precise spatial and temporal genome-wide cooperation between regulatory elements (REs) and their targeted genes. However, the lengths of REs defined using different methods vary, which indicates that there is sequence redundancy and that the context of the genome may be unintelligible. We developed a method called MAE-seq (Massive Active Enhancers by Sequencing) to experimentally identify functional REs at a 25-bp scale.
View Article and Find Full Text PDFFerroelectric polymers have great potential applications in mechanical/thermal sensing, but their sensitivity and detection limit are still not outstanding. We propose interface engineering to improve the charge collection in a ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) copolymer (P(VDF-TrFE)) thin film via cross-linking with poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonate (PEDOT:PSS) layer. The as-fabricated P(VDF-TrFE)/PEDOT:PSS composite film exhibits an ultrasensitive and linear mechanical/thermal response, showing sensitivities of 2.
View Article and Find Full Text PDFBackground: With the wide application of multislice spiral computed tomography (CT), the frequency of detection of multiple lung cancer is increasing. This study aimed to analyze gene mutations characteristics in multiple primary lung cancers (MPLC) using large panel next-generation sequencing (NGS) assays.
Methods: Patients with MPLC surgically removed from the Affiliated Hospital of Guangdong Medical University from Jan 2020 to Dec 2021 enrolled the study.
An in-house designed transmission X-ray microscopy (TXM) instrument has been developed and commissioned at beamline BL18B of the Shanghai Synchrotron Radiation Facility (SSRF). BL18B is a hard (5-14 keV) X-ray bending-magnet beamline recently built with sub-20 nm spatial resolution in TXM. There are two kinds of resolution mode: one based on using a high-resolution-based scintillator-lens-coupled camera, and the other on using a medium-resolution-based X-ray sCMOS camera.
View Article and Find Full Text PDFBackground: Lung adenocarcinoma (LUAD) is a leading cause of cancer-related death worldwide. Ferroptosis, a form of cell death characterized by iron-dependent lipid peroxidation. However, the involvement of ferroptosis in the regulation of immune cell infiltration and its immunotherapeutic efficacy in LUAD remain unclear.
View Article and Find Full Text PDFPoly(3,4-ethylene dioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) thermoelectric thin films have attracted significant interest due to their solution-processable manufacturing. However, molecular-level tuning or doping is still a challenge to synergistically boost their thermoelectric performance and mechanically stretchable capabilities. In this work, we report a counterion exchange between ionic liquid bis(-fluorosulfonyl) amide lithium (Li:FSI, = 1, 3, 5) with different sizes of anions and a PEDOT:PSS-induced bipolaron network, which significantly boosted the thermoelectric power factor from 0.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2022
Rodents are used extensively as animal models for the preclinical investigation of microvascular-related diseases. However, motion artifacts in currently available imaging methods preclude real-time observation of microvessels in vivo. In this paper, a pixel temporal averaging (PTA) method that enables real-time imaging of microvessels in the mouse brain in vivo is described.
View Article and Find Full Text PDF