Publications by authors named "Denecke M"

Due to the growing interest of International Atomic Energy Agency (IAEA) Member States in implementing targeted radionuclide therapy (TRT) in general, the demand for alpha-emitting radionuclides and radiopharmaceuticals is enormous. As an international platform for peaceful applications of radionuclides, the IAEA has been implementing several activities focusing on the production and quality control of alpha emitters and radiopharmaceuticals as well as capacity building in the field, through Technical Meetings, Workshops, Publications and Conference Supports, IAEA-Coordinated Research Projects (CRP) and Technical Cooperation Program (TC). This review article summarises the IAEA activities on the production and quality control of alpha emitter radiopharmaceuticals for targeted alpha therapy (TAT) and a roadmap to future steps including but not limited to the ongoing CRP on Ac-radiopharmaceuticals.

View Article and Find Full Text PDF

The International Atomic Energy Agency (IAEA) held the 3rd International Symposium on Trends in Radiopharmaceuticals, (ISTR-2023) at IAEA Headquarters in Vienna, Austria, during the week of 16-21 April 2023. This procedural paper summarizes highlights from symposium presentations, posters, panel discussions and satellite meetings, and provides additional resources that may be useful to researchers working with diagnostic and therapeutic radiopharmaceuticals in the academic, government and industry setting amongst IAEA Member States and beyond. More than 550 participants in person from 88 Member States attended the ISTR-2023.

View Article and Find Full Text PDF

In the past decade, there has been a growth in using Zirconium-89 (Zr) as a radionuclide in nuclear medicine for cancer diagnostic imaging and drug discovery processes. Although one of the most popular chelators for Zr, desferrioxamine (DFO) is typically presented as a hexadentate ligand, our work suggests a different scenario. The coordination structure of the Zr-DFO complex has primarily been informed by DFT-based calculations, which typically ignore temperature and therefore entropic and dynamic solvent effects.

View Article and Find Full Text PDF

In the past 20 years, there has been a major stride in understanding the core mechanism of anaerobic ammonium-oxidizing (anammox) bacteria, but there are still several discussion points on their survival strategies. Here, we discovered a new genus of anammox bacteria in a full-scale wastewater-treating biofilm system, tentatively named "Candidatus Loosdrechtia aerotolerans". Next to genes of all core anammox metabolisms, it encoded and transcribed genes involved in the dissimilatory nitrate reduction to ammonium (DNRA), which coupled to oxidation of small organic acids, could be used to replenish ammonium and sustain their metabolism.

View Article and Find Full Text PDF

Nuclear power will continue to provide energy for the foreseeable future, but it can pose significant challenges in terms of the disposal of waste and potential release of untreated radioactive substances. Iodine is a volatile product from uranium fission and is particularly problematic due to its solubility. Different isotopes of iodine present different issues for people and the environment.

View Article and Find Full Text PDF

This study aimed to model and optimize mainstream deammonification in an integrated fixed-film activated sludge (IFAS) pilot plant under natural seasonal temperature variations. The effect of gradually decreasing temperature on the performance was evaluated during a winter season and a transition period to summer conditions, and the correlation of the performance parameters was investigated using principal component analysis (PCA). The optimization of intermittent aeration in the long-term (30 days) dynamic conditions with on/off ratio and dissolved oxygen (DO) set-point control was used to maximize the N-removal rate (NRR) and N-removal efficiency (NRE).

View Article and Find Full Text PDF

Granules recovered from a highly reduced anaerobic digester were capable of active nitrogen removal in the absence of exogenous electron donors, averaging 0.25 mg mgNO-N /gVSS/d over 546 days of operation. Electron mass balance indicated that about half the influent nitrate was converted to ammonia via DNRA and another half denitrified.

View Article and Find Full Text PDF

Anaerobic ammonium oxidation (anammox) is a key N-producing process in the global nitrogen cycle. Major progress in understanding the core mechanism of anammox bacteria has been made, but our knowledge of the survival strategies of anammox bacteria in complex ecosystems, such as full-scale wastewater treatment plants (WWTPs), remains limited. Here, by combining metagenomics with in situ metatranscriptomics, complex anammox-driven nitrogen cycles in an anoxic tank and a granular activated carbon (GAC) biofilm module of a full-scale WWTP treating landfill leachate were constructed.

View Article and Find Full Text PDF

For eight months, a sequencing batch reactor (SBR) with integrated fixed-film activated sludge (IFAS) was operated in ambient temperature to study engineering and practical aspects of application of deammonification for mainstream conditions. For biofilm formation, K3 Kaldnes carriers were used, where the anaerobic ammonium oxidation (anammox) process can occur in deep layers of biofilm, while partial nitritation occurs in oxygen-rich outer layers. After the initial running phase of the reactor (Phase 1) to provide time for microorganisms to adapt, the COD: N ratio increased to around 2.

View Article and Find Full Text PDF

Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the nitrogen cycle by coupling ammonium and nitrite to produce dinitrogen gas (N). Polymerase chain reaction (PCR) is a fast, simple, and sensitive method that is widely used to assess the diversity, abundance, and activity of the slow-growing bacteria. In this review, we summarize and evaluate the wide variety of PCR primers targeting the 16S rRNA gene and functional genes (hzo, nir, and hzs) of anammox bacteria for their effectiveness and efficiencies in detecting this group of bacteria in different sample types.

View Article and Find Full Text PDF

Trace elements analysis is a fundamental challenge in environmental sciences. Scientists measure trace elements in environmental media in order to assess the quality and safety of ecosystems and to quantify the burden of anthropogenic pollution. Among the available analytical techniques, X-ray based methods are particularly powerful, as they can quantify trace elements .

View Article and Find Full Text PDF

Coherent diffraction imaging (CDI) or lensless X-ray microscopy has become of great interest for high spatial resolution imaging of, e.g., nanostructures and biological specimens.

View Article and Find Full Text PDF

Pu L3 HR-XANES and FEFF9 computations provide evidence for band-like 6d states in colloidal Pu contrasting to narrow 6d states in molecular Pu(iv). Pu L3 HR-XANES is valuable for bond length estimation in plutonyl, whereas Pu M5 HR-XANES is an advanced tool for analysing Pu redox states and 5f unoccupied density of states.

View Article and Find Full Text PDF

A mathematical model for a granular biofilm reactor for leachate treatment was validated by long-term measured data to investigate the mechanisms and drivers influencing biological nitrogen removal and microbial consortia dynamics. The proposed model, based on Activated Sludge Model (ASM1), included anaerobic ammonium oxidation (anammox), nitrifying and heterotrophic denitrifying bacteria which can attach and grow on granular activated carbon (GAC) particles. Two kinetic descriptions for the model were proposed: with and without soluble microbial products (SMP) and extracellular polymeric substance (EPS).

View Article and Find Full Text PDF

Transformation products of two-line ferrihydrite associated with Lu(III) were studied after 12 years of aging using aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), high-efficiency energy-dispersive X-ray spectroscopy (EDXS), and density functional theory (DFT). The transformation products consisted of hematite nanoparticles with overgrown goethite needles. High-efficiency STEM-EDXS revealed that Lu is only associated with goethite needles, and atomic-resolution HAADF-STEM reveals structural incorporation of Lu within goethite, partially replacing structural Fe sites.

View Article and Find Full Text PDF

We report the unambiguous detection of phenyl groups covalently attached to functionalised graphene using non-linear spectroscopy. Sum-frequency generation was employed to probe graphene on a gold surface after chemical functionalisation using a benzene diazonium salt. We observe a distinct resonance at 3064 cm-1 which can clearly be assigned to an aromatic C-H stretch by comparison with a self-assembled monolayer on a gold substrate formed from benzenethiol.

View Article and Find Full Text PDF

Integrated Water Resource Management (IWRM) was acknowledged as a leading concept in the water management for the last two decades by academia, political decision-makers and experts. It strongly promotes holistic management and participatory approaches. The flexibility and adaptability of IWRM concept are especially important for large, transboundary river basins - e.

View Article and Find Full Text PDF

CAT-ACT-the hard X-ray beamline for CATalysis and ACTinide/radionuclide research at the KIT synchrotron radiation facility ANKA-is dedicated to X-ray spectroscopy, including "flux hungry" photon-in/photon-out and correlative techniques and combines state-of-the-art optics with a unique infrastructure for radionuclide and catalysis research. Measurements can be performed at photon energies varying between 3.4 keV and 55 keV, thus encompassing the actinide M- and L-edge or potassium K-edge up to the K-edges of the lanthanide series such as cerium.

View Article and Find Full Text PDF

Structural information of nanostructures plays a key role in synthesis of novel nano-sized materials for promising applications such as high-performance nanoelectronics and nanophotonics. In this study, we apply for the first time the state-of-the-art coherent diffractive imaging method to characterize the structure of graphite nanoparticles. A sample with nanographites on a SiN support was exposed to 30 nm radiation from a tabletop laser-driven high-order harmonic generation extreme ultraviolet (EUV) source.

View Article and Find Full Text PDF

During nuclear waste disposal process, radioactive iodine as a fission product can be released. The widespread implementation of sustainable nuclear energy thus requires the development of efficient iodine stores that have simultaneously high capacity, stability and more importantly, storage density (and hence minimized system volume). Here, we report high I adsorption in a series of robust porous metal-organic materials, MFM-300(M) (M = Al, Sc, Fe, In).

View Article and Find Full Text PDF

Eleven published PCR primer sets for detecting genes encoding 16S ribosomal RNA (rRNA), hydrazine oxidoreductase (HZO), cytochrome cd -containing nitrite reductase (NirS), and hydrazine synthase subunit A (HzsA) of anaerobic ammonium-oxidizing (anammox) bacteria were assessed for the diversity and abundance of anammox bacteria in samples of three environments: wastewater treatment plant (WWTP), wetland of Mai Po Nature Reserve (MP), and the South China Sea (SCS). Consistent phylogenetic results of three biomarkers (16S rRNA, hzo, and hzsA) of anammox bacteria were obtained from all samples. WWTP had the lowest diversity with Candidatus Kuenenia dominating while the SCS was dominated by Candidatus Scalindua.

View Article and Find Full Text PDF

Biological methane oxidation may be regarded as a method of aftercare treatment for landfills to reduce climate relevant methane emissions. It is of social and economic interest to estimate the behavior of bacterial methane oxidation in aged landfill covers due to an adequate long-term treatment of the gas emissions. Different approaches assessing methane oxidation in laboratory column studies have been investigated by other authors recently.

View Article and Find Full Text PDF

One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra.

View Article and Find Full Text PDF

The first hydrophilic, 1,10-phenanthroline derived ligands consisting of only C, H, O and N atoms for the selective extraction of Am(iii) from spent nuclear fuel are reported herein. One of these 2,9-bis-triazolyl-1,10-phenanthroline (BTrzPhen) ligands combined with a non-selective extracting agent, was found to exhibit process-suitable selectivity for Am(iii) over Eu(iii) and Cm(iii), providing a clear step forward.

View Article and Find Full Text PDF