Publications by authors named "Denbesten P"

Ectomesenchymal stem cells derived from the dental pulp are of neural crest origin, and as such are promising sources for cell therapy and tissue engineering. For safe upscaling of these cells, microcarrier-based culturing under dynamic conditions is a promising technology. We tested the suitability of two microcarriers, non-porous Cytodex 1 and porous Cytopore 2, for culturing well characterized dental pulp stem cells (DPSCs) using a shake flask system.

View Article and Find Full Text PDF

Amelogenesis, the formation of dental enamel, is well understood at the histomorphological level but the underlying molecular mechanisms are poorly characterized. Ameloblasts secrete enamel matrix proteins and Ca, and also regulate extracellular pH as the formation of hydroxyapatite crystals generates large quantities of protons. Genetic or environmental impairment of transport and regulatory processes (e.

View Article and Find Full Text PDF

TRPM7 plays an important role in cellular Ca, Zn and Mg homeostasis. TRPM7 channels are abundantly expressed in ameloblasts and, in the absence of TRPM7, dental enamel is hypomineralized. The potential role of TRPM7 channels in Ca transport during amelogenesis was investigated in the HAT-7 rat ameloblast cell line.

View Article and Find Full Text PDF

Background: Previous studies have shown a correlation between fluoride concentrations in urine and community water fluoride concentrations. However, there are no studies of the relationship between community water fluoridation, urine, serum, and amniotic fluid fluoride concentrations in pregnant women in the US. The aim of this study was to determine the relationship between maternal urine fluoride (MUF), maternal urine fluoride adjusted for specific gravity (MUF), maternal serum fluoride (MSF), amniotic fluid fluoride (AFF) concentrations during pregnancy, and community water fluoridation in Northern California.

View Article and Find Full Text PDF

Fluoride ingestion has been linked to changes in behavior in mice and rats, related to dose, sex of the animal, and the timing of exposure. Previous studies have shown the behavior of female rats to be most affected by postnatal fluoride exposure, and in this study we determined the effects of postnatal fluoride exposure on anxiety related behavior and serotonin. Mice given 50 ppm fluoride in drinking water had increased entries in the open arms of the elevated plus maze, suggesting reduced anxiety.

View Article and Find Full Text PDF

During enamel development, formation of hydroxyapatite crystals and regulation of pH in the enamel matrix require massive transport of ions. Both ameloblasts and adjacent dental epithelial cells in the stellate reticulum co-express several transmembrane cotransporters/ion-exchangers for transport of ions across plasma membranes. Gap junctions (GJs) enable intercellular exchanges of ions between neighboring cells.

View Article and Find Full Text PDF

We have recently developed a novel model using HAT-7 rat ameloblast cells to functionally study epithelial ion transport during amelogenesis. Our present aims were to identify key transporters of bicarbonate in HAT-7 cells and also to examine the effects of fluoride exposure on vectorial bicarbonate transport, cell viability, and the development of transepithelial resistance. To obtain monolayers, the HAT-7 cells were cultured on Transwell permeable filters.

View Article and Find Full Text PDF

For decades, dental schools in the United States have endured a significant faculty shortage. Studies have determined that the top 2 sources of dental faculty are advanced education programs and private practice. Those who have completed both DDS and PhD training are considered prime candidates for dental faculty positions.

View Article and Find Full Text PDF

Na:K:2Cl cotransporters (NKCCs) belong to the family of cation-coupled Cl transporters. We investigated whether enamel-producing mouse ameloblasts express NKCCs. Transcripts for were identified in the mouse dental epithelium by RT-qPCR and NKCC1 protein was immunolocalized in outer enamel epithelium and in the papillary layer but not the ameloblast layer.

View Article and Find Full Text PDF

The Encouraging Novel Amelogenesis Models and Ex vivo cell Lines (ENAMEL) Development workshop was held on 23 June 2017 at the Bethesda headquarters of the National Institute of Dental and Craniofacial Research (NIDCR). Discussion topics included model organisms, stem cells/cell lines, and tissues/3D cell culture/organoids. Scientists from a number of disciplines, representing institutions from across the United States, gathered to discuss advances in our understanding of enamel, as well as future directions for the field.

View Article and Find Full Text PDF

Dental enamel, the hardest mammalian tissue, is produced by ameloblasts. Ameloblasts show many similarities to other transporting epithelia although their secretory product, the enamel matrix, is quite different. Ameloblasts direct the formation of hydroxyapatite crystals, which liberate large quantities of protons that then need to be buffered to allow mineralization to proceed.

View Article and Find Full Text PDF

Objective: Fluoride excess of 0.05-0.07mgF/kgbw/day in water or food additives like salt is the principal cause of endemic dental fluorosis.

View Article and Find Full Text PDF

Tooth enamel is mineralized through the differentiation of multiple dental epithelia including ameloblasts and the stratum intermedium (SI), and this differentiation is controlled by several signaling pathways. Previously, we demonstrated that the transcriptional coactivator Mediator 1 (MED1) plays a critical role in enamel formation. For instance, conditional ablation of in dental epithelia causes functional changes in incisor-specific dental epithelial stem cells, resulting in mineralization defects in the adult incisors.

View Article and Find Full Text PDF

Regulation of pH by ameloblasts during amelogenesis is critical for enamel mineralization. We examined the effects of reduced bicarbonate secretion and the presence or absence of amelogenins on ameloblast modulation and enamel mineralization. To that end, the composition of fluorotic and non-fluorotic enamel of several different mouse mutants, including enamel of cystic fibrosis transmembrane conductance regulator-deficient (Cftr null), anion exchanger-2-deficient (Ae2a,b null), and amelogenin-deficient (Amelx null) mice, was determined by quantitative X-ray microanalysis.

View Article and Find Full Text PDF

Background And Objectives: Amelogenin proteins are the major constituent of developing extracellular enamel matrix and are believed to have an exclusively epithelial origin. Recent studies have suggested that amelogenins might induce the differentiation and maturation of various cells, including cementoblast lineage cells. However, the residues comprising the active site of amelogenin remain unclear.

View Article and Find Full Text PDF

Background: Extracts of enamel matrix proteins are used to regenerate periodontal tissue; amelogenin, the most abundant enamel protein, plays an important role in this regeneration. Studies have demonstrated that amelogenin fragments promote tissue regeneration, but the bioactive site of amelogenin remains unclear. This study explores the functional domain of amelogenin by investigating effects of four amelogenin species on cementoblast proliferation.

View Article and Find Full Text PDF

Ameloblasts express transmembrane proteins for transport of mineral ions and regulation of pH in the enamel space. Two major transporters recently identified in ameloblasts are the Na(+)K(+)-dependent calcium transporter NCKX4 and the Na(+)-dependent HPO4 (2-) (Pi) cotransporter NaPi-2b. To regulate pH, ameloblasts express anion exchanger 2 (Ae2a,b), chloride channel Cftr, and amelogenins that can bind protons.

View Article and Find Full Text PDF

Formation of apatite crystals during enamel development generates protons. To sustain mineral accretion, maturation ameloblasts need to buffer these protons. The presence of cytosolic carbonic anhydrases, the basolateral Na(+) bicarbonate cotransporter Nbce1, and the basolateral anion exchanger Ae2a,b in maturation ameloblasts suggests that these cells secrete bicarbonates into the forming enamel, but it is unknown by which mechanism.

View Article and Find Full Text PDF

Formation of crystals in the enamel space releases protons that need to be buffered to sustain mineral accretion. We hypothesized that apical cystic fibrosis transmembrane conductance regulator (CFTR) in maturation ameloblasts transduces chloride into forming enamel as a critical step to secrete bicarbonates. We tested this by determining the calcium, chloride, and fluoride levels in developing enamel of Cftr-null mice by quantitative electron probe microanalysis.

View Article and Find Full Text PDF

Amelogenins are the most abundant protein species in forming dental enamel, taken to regulate crystal shape and crystal growth. Unprotonated amelogenins can bind protons, suggesting that amelogenins could regulate the pH in enamel in situ. We hypothesized that without amelogenins the enamel would acidify unless ameloblasts were buffered by alternative ways.

View Article and Find Full Text PDF

Human deciduous and permanent teeth exhibit different developmental processes, morphologies, histological characteristics and life cycles. In addition, their pulp tissues react differently to external stimuli, such as the pulp sensitivity test, dental trauma and pulp therapy materials. These suggest differences in gene expression and regulation, and in this study we compared gene-expression profiles of the human dental pulp from deciduous and permanent teeth.

View Article and Find Full Text PDF

During the formation of dental enamel, maturation-stage ameloblasts express ion-transporting transmembrane proteins. The SLC4 family of ion-transporters regulates intra- and extracellular pH in eukaryotic cells by cotransporting HCO3 (-) with Na(+). Mutation in SLC4A4 (coding for the sodium-bicarbonate cotransporter NBCe1) induces developmental defects in human and murine enamel.

View Article and Find Full Text PDF

Amelogenesis Imperfecta (AI) is a clinical diagnosis that encompasses a group of genetic mutations, each affecting processes involved in tooth enamel formation and thus, result in various enamel defects. The hypomaturation enamel phenotype has been described for mutations involved in the later stage of enamel formation, including Klk4, Mmp20, C4orf26, and Wdr72. Using a candidate gene approach we discovered a novel Wdr72 human mutation in association with AI to be a 5-base pair deletion (c.

View Article and Find Full Text PDF

The development of cell-based therapeutic strategies to bioengineer tooth tissue is a promising approach for the treatment of lost or damaged tooth tissue. The lack of a readily available cell source for human dental epithelial cells (ECs) severely constrains the progress of tooth bioengineering. Previous studies in model organisms have demonstrated that developing dental mesenchyme can instruct nondental epithelium to differentiate into enamel-forming epithelium.

View Article and Find Full Text PDF