Publications by authors named "Dena R Howland"

Purpose: Postoperative pneumonia remains a common complication of surgery, despite increased attention. The purpose of our study was to determine the effects of routine surgery and post-surgical opioid administration on airway protection risk.

Methods: Eight healthy adult cats were evaluated to determine changes in airway protection status and for evidence of dysphagia in two experiments.

View Article and Find Full Text PDF

Gastrointestinal (GI) complications, including motility disorders, metabolic deficiencies, and changes in gut microbiota following spinal cord injury (SCI), are associated with poor outcomes. After SCI, the autonomic nervous system becomes unbalanced below the level of injury and can lead to severe GI dysfunction. The SmartPill™ is a non-invasive capsule that, when ingested, transmits pH, temperature, and pressure readings that can be used to assess effects in GI function post-injury.

View Article and Find Full Text PDF

The immature central nervous system is recognized as having substantial neuroplastic capacity. In this study, we explored the hypothesis that rehabilitation can exploit that potential and elicit reciprocal walking in nonambulatory children with chronic, severe (i.e.

View Article and Find Full Text PDF

Animal models are necessary to identify pathological changes and help assess therapeutic outcomes following spinal cord injury (SCI). Small animal models offer value in research in terms of their easily managed size, minimal maintenance requirements, lower cost, well-characterized genomes, and ability to power research studies. However, despite these benefits, small animal models have neurologic and anatomical differences that may influence translation of results to humans and thus limiting the success of their use in preclinical studies as a direct pipeline to clinical studies.

View Article and Find Full Text PDF

Laryngeal function is vital to airway protection. Although swallow is mediated by the brainstem, the mechanism underlying the increased risk of dysphagia after cervical spinal cord injury (SCI) is unknown. We hypothesized that: ) loss of descending phrenic drive affects swallow and breathing differently, and ) loss of ascending spinal afferent information alters swallow regulation.

View Article and Find Full Text PDF

There is an increasing need to develop approaches that will not only improve the clinical management of neurogenic lower urinary tract dysfunction (NLUTD) after spinal cord injury (SCI), but also advance therapeutic interventions aimed at recovering bladder function. Although pre-clinical research frequently employs rodent SCI models, large animals such as the pig may play an important translational role in facilitating the development of devices or treatments. Therefore, the objective of this study was to develop a urodynamics protocol to characterize NLUTD in a porcine model of SCI.

View Article and Find Full Text PDF

Yucatan miniature pigs (YMPs) are similar to humans in spinal cord size as well as physiological and neuroanatomical features, making them a useful model for human spinal cord injury. However, little is known regarding pig gait kinematics, especially on a treadmill. In this study, 12 healthy YMPs were assessed during bipedal and/or quadrupedal stepping on a treadmill at six speeds (1.

View Article and Find Full Text PDF

Lung volume is modulated by sensory afferent feedback via vagal and spinal pathways. The purpose of this study was to systematically alter afferent feedback with and without a mechanical challenge (chest compression). We hypothesized that manipulation of afferent feedback by nebulization of lidocaine, extra-thoracic vagotomy, or lidocaine administration to the pleural space would produce differential effects on the motor pattern of breathing during chest compression in sodium pentobarbital anesthetized rats (N = 43).

View Article and Find Full Text PDF

Inhibitory pathways from Golgi tendon organs project widely between muscles crossing different joints and axes of rotation. Evidence suggests that the strength and distribution of this intermuscular inhibition is dependent on motor task and corresponding signals from the brainstem. The purpose of the present study was to investigate whether this sensory network is altered after spinal cord hemisection as a potential explanation for motor deficits observed after spinal cord injury (SCI).

View Article and Find Full Text PDF

Swallow-breathing coordination is influenced by changes in lung volume, which is modulated by feedback from both vagal and spinal sensory afferents. The purpose of this study was to manipulate feedback from these afferents, with and without a simultaneous mechanical challenge (chest compression), in order to assess the influence of each sensory pathway on swallow in rats. We hypothesized that manipulation of afferent feedback would shift the occurrence of swallow toward the inspiratory phase of breathing.

View Article and Find Full Text PDF

Afferent feedback can appreciably alter the pharyngeal phase of swallow. In order to measure the stability of the swallow motor pattern during several types of alterations in afferent feedback, we assessed swallow during a conventional water challenge in four anesthetized cats, and compared that to swallows induced by fixed (20 Hz) and stochastic (1-20Hz) electrical stimulation applied to the superior laryngeal nerve. The swallow motor patterns were evaluated by electromyographic activity (EMG) of eight muscles, based on their functional significance: laryngeal elevators (mylohyoid, geniohyoid, and thyrohyoid); laryngeal adductor (thyroarytenoid); inferior pharyngeal constrictor (thyropharyngeus); upper esophageal sphincter (cricopharyngeus); and inspiratory activity (parasternal and costal diaphragm).

View Article and Find Full Text PDF

Background: Kinematic and kinetic analysis have been used to gain an understanding of canine movement and joint loading during gait. By non-invasively predicting muscle activation patterns and forces during gait, musculoskeletal models can further our understanding of normal variability and muscle activation patterns and force profiles characteristic of gait.

Methods: Pelvic limb kinematics and kinetics were measured for a 2 year old healthy female Dachshund (5.

View Article and Find Full Text PDF

Transfer of information across a spinal lesion is required for many aspects of recovery across diverse motor systems. Our understanding of axonal plasticity and which subpopulations of neurons may contribute to bridging substrates following injury, however, remains relatively incomplete. Most recently, attention has been directed to propriospinal neurons (PSNs), with research suggesting that they are capable of bridging a spinal lesion in rodents.

View Article and Find Full Text PDF

Anatomical connections are reported between the cerebellum and brainstem nuclei involved in swallow such as the nucleus tractus solitarius, nucleus ambiguus, and Kölliker-fuse nuclei. Despite these connections, a functional role of the cerebellum during swallow has not been elucidated. Therefore, we examined the effects of cerebellectomy on swallow muscle recruitment and swallow-breathing coordination in anesthetized freely breathing cats.

View Article and Find Full Text PDF

Background: Kinematic gait analysis is an important noninvasive technique used for quantitative evaluation and description of locomotion and other movements in healthy and injured populations. Three dimensional (3D) kinematic analysis offers additional outcome measures including internal-external rotation not characterized using sagittal plane (2D) analysis techniques.

Methods: The objectives of this study were to 1) develop and evaluate a 3D hind limb multiplane kinematic model for gait analysis in cats using joint coordinate systems, 2) implement and compare two 3D stifle (knee) prediction techniques, and 3) compare flexion-extension determined using the multiplane model to a sagittal plane model.

View Article and Find Full Text PDF

Introduction: Functional walking requires the ability to modify one's gait pattern to environmental demands and task goals-gait adaptability. Following incomplete spinal cord injury (ISCI), gait rehabilitation such as locomotor training (Basic-LT) emphasizes intense, repetitive stepping practice. Rehabilitation approaches focusing on practice of gait adaptability tasks have not been established for individuals with ISCIs but may promote recovery of higher level walking skills.

View Article and Find Full Text PDF

We investigated the hypothesis, motivated in part by a coordinated computational cough network model, that second-order neurons in the nucleus tractus solitarius (NTS) act as a filter and shape afferent input to the respiratory network during the production of cough. In vivo experiments were conducted on anesthetized spontaneously breathing cats. Cough was elicited by mechanical stimulation of the intrathoracic airways.

View Article and Find Full Text PDF

A module is a functional unit of the nervous system that specifies functionally relevant patterns of muscle activation. In adults, four to five modules account for muscle activation during walking. Neurological injury alters modular control and is associated with walking impairments.

View Article and Find Full Text PDF

Advances in the neurobiology of spinal cord injury (SCI) have prompted increasing attention to opportunities for moving experimental strategies towards clinical applications. Preclinical studies are the centerpiece of the translational process. A major challenge is to establish strategies for achieving optimal translational progression while minimizing potential repetition of previous disappointments associated with clinical trials.

View Article and Find Full Text PDF

Arm and leg coordination naturally emerges during walking, but can be affected by stroke or Parkinson's disease. The purpose of this preliminary study was to characterize arm and leg coordination during treadmill walking at self-selected comfortable walking speeds (CWSs) in individuals using arm swing with motor incomplete spinal cord injury (iSCI). Hip and shoulder angle cycle durations and amplitudes, strength of peak correlations between contralateral hip and shoulder joint angle time series, the time shifts at which these peak correlations occur, and associated variability were quantified.

View Article and Find Full Text PDF

Following a lateralized spinal cord injury (SCI) in humans, substantial walking recovery occurs; however, deficits persist in adaptive features of locomotion critical for community ambulation, including obstacle negotiation. Normal obstacle negotiation is accomplished by an increase in flexion during swing. If an object is unanticipated or supraspinal input is absent, obstacle negotiation may involve the spinally organized stumbling corrective response.

View Article and Find Full Text PDF

A number of studies have shown that chondroitinase ABC (Ch'ase ABC) digestion of inhibitory chondroitin sulfate glycosaminoglycans significantly enhances axonal growth and recovery in rodents following spinal cord injury (SCI). Further, our group has shown improved recovery following SCI in the larger cat model. The purpose of the current study was to determine whether intraspinal delivery of Ch'ase ABC, following T10 hemisections in adult cats, enhances adaptive movement features during a skilled locomotor task and/or promotes plasticity of spinal and supraspinal circuitry.

View Article and Find Full Text PDF

Background And Purpose: The authors previously reported on walking recovery in a nonambulatory child with chronic, severe, incomplete cervical spinal cord injury (SCI) after 76 sessions of locomotor training (LT). Although clinical measures did not predict his recovery, reciprocal patterned leg movements developed, affording recovery of independent walking with a reverse rolling walker. The long-term functional limitations and secondary complications often associated with pediatric-onset SCI necessitate continued follow-up of children with SCI.

View Article and Find Full Text PDF

A function of the abdominal expiratory muscles is the generation of cough, a critical respiratory defense mechanism that is often disrupted following spinal cord injury. We assessed the effects of a lateral T9/10 hemisection on cough production at 4, 13 and 21 weeks post-injury in cats receiving extensive locomotor training. The magnitudes of esophageal pressure as well as of bilateral rectus abdominis electromyogram activity during cough were not significantly different from pre-injury values at all time points evaluated.

View Article and Find Full Text PDF

Pulmonary morbidity is high following spinal cord injury and is due, in part, to impairment of airway protective behaviors. These airway protective behaviors include augmented breaths, the cough reflex, and expiration reflexes. Functional recovery of these behaviors has been reported after spinal cord injury.

View Article and Find Full Text PDF