Publications by authors named "Dena M Johnson-Schlitz"

Microtubules are essential to neuron shape and function. Acetylation of tubulin has the potential to directly tune the behavior and function of microtubules in cells. Although proteomic studies have identified several acetylation sites in α-tubulin, the effects of acetylation at these sites remains largely unknown.

View Article and Find Full Text PDF

Neuronal axons terminate as synaptic boutons that form stable yet plastic connections with their targets. Synaptic bouton development relies on an underlying network of both long-lived and dynamic microtubules that provide structural stability for the boutons while also allowing for their growth and remodeling. However, a molecular-scale mechanism that explains how neurons appropriately balance these two microtubule populations remains a mystery.

View Article and Find Full Text PDF

Microtubules are essential for neuronal structure and function. Axonal and dendritic microtubules are enriched in post-translational modifications that impact microtubule dynamics, transport and microtubule-associated proteins. Acetylation of α-tubulin lysine 40 (K40) is a prominent and conserved modification of neuronal microtubules.

View Article and Find Full Text PDF

The analysis of double-strand break (DSB) repair is complicated by the existence of several pathways utilizing a large number of genes. Moreover, many of these genes have been shown to have multiple roles in DSB repair. To address this complexity we used a repair reporter construct designed to measure multiple repair outcomes simultaneously.

View Article and Find Full Text PDF

When a double-strand break has a gap between the broken ends, the missing information can be restored through synthesis from a homologous template. Here we address the question of how long such a gap can be before this process fails. We measured the frequency of homologous repair in the Drosophila germ line following the creation of gaps of specific sizes ranging from 3.

View Article and Find Full Text PDF