Publications by authors named "Demur C"

Dendrogenin A (DDA) is a newly discovered cholesterol metabolite with tumor suppressor properties. Here, we explored its efficacy and mechanism of cell death in melanoma and acute myeloid leukemia (AML). We found that DDA induced lethal autophagy in vitro and in vivo, including primary AML patient samples, independently of melanoma Braf status or AML molecular and cytogenetic classifications.

View Article and Find Full Text PDF

Long non-coding RNAs are defined as transcripts larger than 200 nucleotides but without protein-coding potential. There is growing evidence of the important role of long non-coding RNAs in cancer initiation, development and progression. In this study, we sought to evaluate the long non-coding RNA expression profile of patients with cytogenetically normal acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Optimal treatment of blastic plasmacytoid dendritic cell neoplasm (BPDCN), a rare entity of dismal prognosis previously described as CD4+/CD56+ hematodermic malignancies, is not defined. We report five cases of relapsed BPDCN treated with bendamustine hydrochloride, a well-tolerated bifunctional drug acting as an alkylating and antimetabolite agent. All patients were above the age of 50 years and in advanced disease (early first relapse in two, subsequent relapse in three; multi-organ involvement in four; previous intensive chemotherapy in five; and stem cell transplantation in four).

View Article and Find Full Text PDF

Objectives: To assess the prevalence of tobacco consumption in patients with inflammatory arthritis treated in our department and to raise awareness against tobacco in order to reduce the maximum number of active smokers.

Method: A tobacco consumption survey was conducted to patients with inflammatory arthritis treated at the department of Rheumatology. Variables assessed: demographics, diagnosis, treatment, and current smoking.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how the FLT3-ITD mutation in acute myeloid leukemia (AML) cells affects cell cycle regulation, particularly through the control of the CDC25A protein.
  • Upon inhibition of FLT3, CDC25A levels dropped quickly, revealing that its regulation is linked to FLT3-ITD signaling via STAT5.
  • CDC25 inhibitors not only halted cell growth and caused cell death in FLT3-ITD cells but also promoted differentiation, highlighting CDC25A as a potential therapeutic target in treating FLT3-ITD AML.
View Article and Find Full Text PDF
Article Synopsis
  • Acute myeloid leukemias with myelodysplasia-related changes (AML-MRC) show multilineage dysplasia and can be linked to certain genetic mutations.
  • A study of 125 AML-MRC patients discovered that mutations in ASXL1 are linked to worse survival rates and more severe bone marrow issues, while TP53 mutations are connected with complex genetic patterns and poor outcomes.
  • The findings suggest that identifying ASXL1 and TP53 mutations can help classify AML-MRC patients more accurately and predict their prognosis.
View Article and Find Full Text PDF
Article Synopsis
  • - Hemophagocytic lymphohistiocytosis (HLH) is an immune disorder that leads to severe organ damage from a hyperactive immune response, often triggered by infections or cancers like acute myeloid leukemia (AML), making patients more vulnerable to infections.
  • - In a study of 343 AML patients undergoing chemotherapy, 32 developed HLH, showing symptoms like fever, high ferritin levels, and bone marrow involvement, along with complications such as liver issues and lower platelet counts compared to those without HLH.
  • - Treatment typically includes corticosteroids and immune therapies, but patients with HLH had a significantly poorer survival rate (14.9 months) compared to those without it (22.1 months), highlighting
View Article and Find Full Text PDF

Consumers are exposed to a mixture of pesticides through their food intake. These compounds are considered risk factors for human health, and the impact of dietary exposure to low doses of pesticide mixtures remains poorly understood. For this study we developed a mouse model to mimic consumer exposure in order to compare the effect of pesticides both alone or combined at doses corresponding to their Acceptable Daily Intake value.

View Article and Find Full Text PDF

In acute myeloid leukemia (AML), new strategies assess the potential benefit of genetically targeted therapy at diagnosis. This implies waiting for laboratory tests and therefore a delay in initiation of chemotherapy. We studied the impact of time from diagnosis to treatment (TDT) on overall survival, early death, and response rate in a retrospective series of 599 newly diagnosed AML patients treated by induction chemotherapy between 2000 and 2009.

View Article and Find Full Text PDF

The mTORC1 signaling pathway is constitutively activated in almost all acute myelogenous leukemia (AML) patients. We conducted a phase Ib trial combining RAD001 (everolimus), an allosteric inhibitor of mTORC1, and conventional chemotherapy, in AML patients under 65 years of age at first relapse (clinical trial NCT 01074086). Increasing doses of RAD001 from 10-70 mg were administrated orally on days 1 and 7 (d1 and d7) of a 3+7 daunorubicin+cytarabine conventional induction chemotherapy regimen.

View Article and Find Full Text PDF

SAR103168, a tyrosine kinase inhibitor of the pyrido [2,3-d] pyridimidine subclass, inhibited the kinase activities of the entire Src kinase family, Abl kinase, angiogenic receptor kinases (vascular endothelial growth factor receptor [VEGFR] 1 and 2), Tie2, platelet derived growth factor (PDGF), fibroblast growth factor receptor (FGFR) 1 and 3, and epidermal growth factor receptor (EGFR). SAR103168 was a potent Src inhibitor, with 50% inhibitory concentration (IC50) = 0.65 ± 0.

View Article and Find Full Text PDF

Several receptor tyrosine kinases (TKs) are involved in the pathogenesis of acute myeloid leukemia (AML). Here, we have assessed the expression of the Recepteur d'Origine Nantais (RON) in leukemic cell lines and samples from AML patients. In a series of 86 AML patients, we show that both the full length and/or the short form (sf) of RON are expressed in 51% and 43% of cases, respectively.

View Article and Find Full Text PDF

Apart from microRNAs, little is known about the regulation of expression of non-coding RNAs in cancer. We investigated whether small nucleolar RNAs (snoRNAs) accumulation displayed specific signatures in acute myeloblastic and acute lymphoblastic leukemias. Using microarrays and high-throughput quantitative PCR (qPCR), we demonstrate here that snoRNA expression patterns are negatively altered in leukemic cells compared with controls.

View Article and Find Full Text PDF

Myeloproliferative neoplasms are frequently associated with aberrant constitutive tyrosine kinase (TK) activity resulting from chimaeric fusion genes or point mutations such as BCR-ABL1 or JAK2 V617F. We report here the cloning and functional characterization of two novel fusion genes BCR-RET and FGFR1OP-RET in chronic myelomonocytic leukemia (CMML) cases generated by two balanced translocations t(10;22)(q11;q11) and t(6;10)(q27;q11), respectively. The two RET fusion genes leading to the aberrant activation of RET, are able to transform hematopoietic cells and skew the hematopoietic differentiation program towards the monocytic/macrophage lineage.

View Article and Find Full Text PDF

Background: The assessment of anticancer agents to treat leukemia needs to have animal models closer to the human pathology such as implantation in immunodeficient mice of leukemic cells from patient samples. A sensitive and early detection of tumor cells in these orthotopic models is a prerequisite for monitoring engraftment of leukemic cells and their dissemination in mice. Therefore, we developed a fluorescent antibody based strategy to detect leukemic foci in mice bearing patient-derived leukemic cells using fluorescence reflectance imaging (FRI) to determine when to start treatments with novel antitumor agents.

View Article and Find Full Text PDF

There has been considerable interest in targeting cell cycle checkpoints particularly in emerging and alternative anticancer strategies. Here, we show that checkpoint abrogation by AZD7762, a potent and selective CHK1/2 kinase inhibitor enhances genotoxic treatment efficacy in immature KG1a leukemic cell line and in AML patient samples, particularly those with a complex karyotype, which display major genomic instability and chemoresistance. Furthermore, these data suggest that constitutive DNA-damage level might be useful markers to select AML patients susceptible to receive checkpoint inhibitor in combination with conventional chemotherapy.

View Article and Find Full Text PDF

Mutations in DNMT3A encoding DNA methyltransferase 3A were recently described in patients with acute myeloid leukemia. To assess their prognostic significance, we determined the mutational status of DNMT3A exon 23 in 288 patients with AML excluding acute promyelocytic leukemia, aged from 18 to 65 years and treated in Toulouse University Hospital. A mutation was detected in 39 patients (13.

View Article and Find Full Text PDF

The JAK2(V617F) mutation is present in the majority of patients with polycythemia vera and one-half of those with essential thrombocythemia and primary myelofibrosis. JAK2(V617F) is a gain-of-function mutation resulting in constitutive JAK2 signaling involved in the pathogenesis of these diseases. JAK2(V617F) has been shown to promote S-phase entry.

View Article and Find Full Text PDF
Article Synopsis
  • Acute myeloid leukemia (AML) is a type of cancer that starts with special cells called leukemic stem cells that can make the disease come back.
  • In this study, researchers looked at patients with AML and found that the level of certain cells (CD34(+)CD38(low/-)CD123(+)) at diagnosis could help predict how well the patients will respond to treatment.
  • The results showed that if more than 15% of these cells were present, it likely meant less successful treatment and shorter survival times for the patients.
View Article and Find Full Text PDF

Therapeutic resistance of acute myeloid leukemia stem cells, enriched in the CD34(+)38(-)123(+) progenitor population, is supported by extrinsic factors such as the bone marrow niche. Here, we report that when adherent onto fibronectin or osteoblast components, CD34(+)38(-)123(+) progenitors survive through an integrin-dependent activation of glycogen synthase kinase 3β (GSK3β) by serine 9-dephosphorylation. Strikingly, GSK3β-mediated survival was restricted to leukemic progenitors from female patients.

View Article and Find Full Text PDF

Acute basophilic leukemia (ABL) is a rare subtype of acute leukemia with clinical features and symptoms related to hyperhistaminemia because of excessive growth of basophils. No known recurrent cytogenetic abnormality is associated with this leukemia. Rare cases of t(X;6)(p11;q23) translocation have been described but these were sporadic.

View Article and Find Full Text PDF

Despite substantial progress in the treatment of AML, a proportion of patients do not achieve first complete remission (1(st) CR) with the induction chemotherapy, and, among patients achieving it, a majority is expected to relapse within three years. As allogeneic hematopoietic stem cell transplantation has been established as the most effective form of antileukemic therapy in patients with AML in remission, many studies have focused on the reconstitution and the functionality of the innate immune system in this context, especially regarding cytotoxic effectors such as natural killer (NK) cells. On the contrary, very few data are available concerning the innate immune system of patients in 1st CR.

View Article and Find Full Text PDF

In search for compounds able to reduce cell adhesion-mediated drug resistance (CAM-DR), we studied effects of Hammada scoparia extracts on leukemic cells adherent or in suspension. We show that H. scoparia flavonoidic fraction and its compound rutin induce apoptosis specifically in adherent leukemic cells and abolish CAM-DR.

View Article and Find Full Text PDF

NPM-ALK (nucleophosmin-anaplastic lymphoma kinase) and TPM3-ALK (nonmuscular tropomyosin 3-anaplastic lymphoma kinase) are oncogenic tyrosine kinases implicated in the pathogenesis of human ALK-positive lymphoma. We report here the development of novel conditional mouse models for ALK-induced lymphomagenesis, with the use of the tetracycline regulatory system under the control of the EmuSRalpha enhancer/promoter. The expression of either oncogene resulted in the arrest of the differentiation of early B cells and lymphomagenesis.

View Article and Find Full Text PDF