In recent years, research on hyperdoped semiconductors has accelerated, displaying dopant concentrations far exceeding solubility limits to surpass the limitations of conventionally doped materials. Nitrogen defects in silicon have been extensively investigated for their unique characteristics compared to other pnictogen dopants. However, previous practical investigations have encountered challenges in achieving high nitrogen defect concentrations due to the low solubility and diffusivity of nitrogen in silicon, and the necessary non-equilibrium techniques, such as ion implantation, resulting in crystal damage and amorphisation.
View Article and Find Full Text PDFTransparent conductive oxides are appealing materials for optoelectronic and plasmonic applications as, amongst other advantages, their properties can be modulated by engineering their defects. Optimisation of this adjustment is, however, a complex design problem. This work examined the modification of the carrier transport properties of sputtered tin-doped indium oxide (ITO) via laser annealing in reactive environments.
View Article and Find Full Text PDFAn auxetic conductive cardiac patch (AuxCP) for the treatment of myocardial infarction (MI) is introduced. The auxetic design gives the patch a negative Poisson's ratio, providing it with the ability to conform to the demanding mechanics of the heart. The conductivity allows the patch to interface with electroresponsive tissues such as the heart.
View Article and Find Full Text PDFNano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technological challenge calls for the development of ultra-fast, high-throughput and low-cost fabrication techniques. Laser processing, accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability.
View Article and Find Full Text PDF