We propose local electromagnetic noise spectroscopy as a versatile and noninvasive tool to study Wigner crystal phases of strongly interacting two-dimensional electronic systems. In-plane imaging of the local noise is predicted to enable single-site resolution of the electron crystal when the sample-probe distance is less than the interelectron separation. At larger sample-probe distances, noise spectroscopy encodes information about the low-energy Wigner crystal phonons, including the dispersion of the transverse shear mode, the pinning resonance due to disorder, and optical modes emerging, for instance, in bilayer crystals.
View Article and Find Full Text PDFQuantum interference can deeply alter the nature of many-body phases of matter. In the case of the Hubbard model, Nagaoka proved that introducing a single itinerant charge can transform a paramagnetic insulator into a ferromagnet through path interference. However, a microscopic observation of this kinetic magnetism induced by individually imaged dopants has been so far elusive.
View Article and Find Full Text PDFThe emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions. However, in kinetically frustrated lattices, itinerant spin polarons-bound states of a dopant and a spin flip-have been theoretically predicted even in the absence of superexchange coupling.
View Article and Find Full Text PDFPhotonic time crystals refer to materials whose dielectric properties are periodic in time, analogous to a photonic crystal whose dielectric properties is periodic in space. Here, we theoretically investigate photonic time-crystalline behaviour initiated by optical excitation above the electronic gap of the excitonic insulator candidate TaNiSe. We show that after electron photoexcitation, electron-phonon coupling leads to an unconventional squeezed phonon state, characterised by periodic oscillations of phonon fluctuations.
View Article and Find Full Text PDFOptical driving of materials has emerged as a versatile tool to control their properties, with photo-induced superconductivity being among the most fascinating examples. In this work, we show that light or lattice vibrations coupled to an electronic interband transition naturally give rise to electron-electron attraction that may be enhanced when the underlying boson is driven into a non-thermal state. We find this phenomenon to be resonantly amplified when tuning the boson's frequency close to the energy difference between the two electronic bands.
View Article and Find Full Text PDFCondensates are a hallmark of emergence in quantum materials such as superconductors and charge density waves. Excitonic insulators are an intriguing addition to this library, exhibiting spontaneous condensation of electron-hole pairs. However, condensate observables can be obscured through parasitic coupling to the lattice.
View Article and Find Full Text PDFA key step in unraveling the mysteries of materials exhibiting unconventional superconductivity is to understand the underlying pairing mechanism. While it is widely agreed upon that the pairing glue in many of these systems originates from antiferromagnetic spin correlations, a microscopic description of pairs of charge carriers remains lacking. Here we use state-of-the art numerical methods to probe the internal structure and dynamical properties of pairs of charge carriers in quantum antiferromagnets in four-legged cylinders.
View Article and Find Full Text PDFSimulations of nuclear magnetic resonance (NMR) experiments can be an important tool for extracting information about molecular structure and optimizing experimental protocols but are often intractable on classical computers for large molecules such as proteins and for protocols such as zero-field NMR. We demonstrate the first quantum simulation of an NMR spectrum, computing the zero-field spectrum of the methyl group of acetonitrile using four qubits of a trapped-ion quantum computer. We reduce the sampling cost of the quantum simulation by an order of magnitude using compressed sensing techniques.
View Article and Find Full Text PDFMagnetic properties of materials ranging from conventional ferromagnetic metals to strongly correlated materials such as cuprates originate from Coulomb exchange interactions. The existence of alternate mechanisms for magnetism that could naturally facilitate electrical control has been discussed theoretically, but an experimental demonstration in an extended system has been missing. Here we investigate MoSe/WS van der Waals heterostructures in the vicinity of Mott insulator states of electrons forming a frustrated triangular lattice and observe direct evidence of magnetic correlations originating from a kinetic mechanism.
View Article and Find Full Text PDFThe transition between distinct phases of matter is characterized by the nature of fluctuations near the critical point. We demonstrate that noise spectroscopy can not only diagnose the presence of a phase transition, but can also determine fundamental properties of its criticality. In particular, by analyzing a scaling collapse of the decoherence profile, one can directly extract the critical exponents of the transition and identify its universality class.
View Article and Find Full Text PDFThe ground-state properties and excitation energies of a quantum emitter can be modified in the ultrastrong coupling regime of cavity quantum electrodynamics (QED) where the light-matter interaction strength becomes comparable to the cavity resonance frequency. Recent studies have started to explore the possibility of controlling an electronic material by embedding it in a cavity that confines electromagnetic fields in deep subwavelength scales. Currently, there is a strong interest in realizing ultrastrong-coupling cavity QED in the terahertz (THz) part of the spectrum, since most of the elementary excitations of quantum materials are in this frequency range.
View Article and Find Full Text PDFA recent experiment showed that a proximity-induced Ising spin-orbit coupling enhances the spin-triplet superconductivity in Bernal bilayer graphene. Here, we show that, due to the nearly perfect spin rotation symmetry of graphene, the fluctuations of the spin orientation of the triplet order parameter suppress the superconducting transition to nearly zero temperature. Our analysis shows that both an Ising spin-orbit coupling and an in-plane magnetic field can eliminate these low-lying fluctuations and can greatly enhance the transition temperature, consistent with the recent experiment.
View Article and Find Full Text PDFTwisted bilayer graphene (TBG) exhibits extremely low Fermi velocities for electrons, with the speed of sound surpassing the Fermi velocity. This regime enables the use of TBG for amplifying vibrational waves of the lattice through stimulated emission, following the same principles of operation of free-electron lasers. Our Letter proposes a lasing mechanism relying on the slow-electron bands to produce a coherent beam of acoustic phonons.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2023
The excitonic insulator is an electronically driven phase of matter that emerges upon the spontaneous formation and Bose condensation of excitons. Detecting this exotic order in candidate materials is a subject of paramount importance, as the size of the excitonic gap in the band structure establishes the potential of this collective state for superfluid energy transport. However, the identification of this phase in real solids is hindered by the coexistence of a structural order parameter with the same symmetry as the excitonic order.
View Article and Find Full Text PDFConventional superconductivity emerges from pairing of charge carriers-electrons or holes-mediated by phonons. In many unconventional superconductors, the pairing mechanism is conjectured to be mediated by magnetic correlations, as captured by models of mobile charges in doped antiferromagnets. However, a precise understanding of the underlying mechanism in real materials is still lacking and has been driving experimental and theoretical research for the past 40 years.
View Article and Find Full Text PDFWe study the electrodynamics of spin triplet superconductors including dipolar interactions, which give rise to an interplay between the collective spin dynamics of the condensate and orbital Meissner screening currents. Within this theory, we identify a class of spin waves that originate from the coupled dynamics of the spin-symmetry breaking triplet order parameter and the electromagnetic field. In particular, we study magnetostatic spin wave modes that are localized to the sample surface.
View Article and Find Full Text PDFWe present an Ansatz for the ground states of the quantum Sherrington-Kirkpatrick model, a paradigmatic model for quantum spin glasses. Our Ansatz, based on the concept of generalized coherent states, very well captures the fundamental aspects of the model, including the ground state energy and the position of the spin glass phase transition. It further enables us to study some previously unexplored features, such as the nonvanishing longitudinal field regime and the entanglement structure of the ground states.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2022
The interplay between charge order and superconductivity remains one of the central themes of research in quantum materials. In the case of cuprates, the coupling between striped charge fluctuations and local electromagnetic fields is especially important, as it affects transport properties, coherence, and dimensionality of superconducting correlations. Here, we study the emission of coherent terahertz radiation in single-layer cuprates of the LaBaCuO family, for which this effect is expected to be forbidden by symmetry.
View Article and Find Full Text PDFWe introduce a new theoretical approach for analyzing pump and probe experiments in non-linear systems of optical phonons. In our approach, the effect of coherently pumped polaritons is modeled as providing time-periodic modulation of the system parameters. Within this framework, propagation of the probe pulse is described by the Floquet version of Maxwell's equations and leads to phenomena such as frequency mixing and resonant parametric production of polariton pairs.
View Article and Find Full Text PDFIn this work, we highlight how trapped-ion quantum systems can be used to study generalized Holstein models, and benchmark expensive numerical calculations. We study a particular spin-Holstein model that can be implemented with arrays of ions confined by individual microtraps, and that is closely related to the Holstein model of condensed matter physics, used to describe electron-phonon interactions. In contrast to earlier proposals, we focus on simulating many-electron systems and inspect the competition between charge-density wave order, fermion pairing, and phase separation.
View Article and Find Full Text PDFPhys Rev Lett
November 2021
Understanding the nature of charge carriers in doped Mott insulators holds the key to unravelling puzzling properties of strongly correlated electron systems, including cuprate superconductors. Several theoretical models suggested that dopants can be understood as bound states of partons, the analogues of quarks in high-energy physics. However, direct signatures of spinon-chargon bound states are lacking, both in experiment and theory.
View Article and Find Full Text PDFThe challenge of understanding the dynamics of a mobile impurity in an interacting quantum many-body medium comes from the necessity of including entanglement between the impurity and excited states of the environment in a wide range of energy scales. In this Letter, we investigate the motion of a finite mass impurity injected into a three-dimensional quantum Bose fluid as it starts shedding Bogoliubov excitations. We uncover a transition in the dynamics as the impurity's velocity crosses a critical value that depends on the strength of the interaction between the impurity and bosons as well as the impurity's recoil energy.
View Article and Find Full Text PDFThe competition between antiferromagnetism and hole motion in two-dimensional Mott insulators lies at the heart of a doping-dependent transition from an anomalous metal to a conventional Fermi liquid. We observe such a crossover in Fermi-Hubbard systems on a cold-atom quantum simulator and reveal the transformation of multipoint correlations between spins and holes upon increasing doping at temperatures around the superexchange energy. Conventional observables, such as spin susceptibility, are furthermore computed from the microscopic snapshots of the system.
View Article and Find Full Text PDF