Publications by authors named "Demis Tserpelis"

Article Synopsis
  • The study looks at how the endometrium (the inner lining of the uterus) changes as women get older and whether these changes affect their ability to have babies.
  • It was found that older women (over 45) have different endometrial cells and gene activity compared to younger women, which could make it harder for embryos to implant.
  • The research included 44 women undergoing hormone treatment and examined biopsies to see how ready their endometrium was for pregnancy at different ages.
View Article and Find Full Text PDF

A subset of genetic variants found through screening of patients with hereditary breast and ovarian cancer syndrome (HBOC) and Lynch syndrome impact RNA splicing. Through target enrichment of the transcriptome, it is possible to perform deep-sequencing and to identify the different and even rare mRNA isoforms. A targeted RNA-seq approach was used to analyse the naturally-occurring splicing events for a panel of 8 breast and/or ovarian cancer susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, PTEN, STK11, CDH1, TP53), 3 Lynch syndrome genes (MLH1, MSH2, MSH6) and the fanconi anaemia SLX4 gene, in which monoallelic mutations were found in non-BRCA families.

View Article and Find Full Text PDF

Objective: Fluoropyrimidine treatment can be optimized based on dihydropyrimidine dehydrogenase (DPD) activity. DPD dysfunction leads to increased exposure to active metabolites, which can result in severe or even fatal toxicity.

Methods: We provide an overview of 8 years of DPD diagnostic testing (n = 1194).

View Article and Find Full Text PDF

Background: BRCA1 and BRCA2 are the two principal tumour suppressor genes associated with inherited high risk of breast and ovarian cancer. Genetic testing of BRCA1/2 will often reveal one or more sequence variants of uncertain clinical significance, some of which may affect normal splicing patterns and thereby disrupt gene function. mRNA analyses are therefore among the tests used to interpret the clinical significance of some genetic variants.

View Article and Find Full Text PDF

Loss-of-function germline mutations in BRCA1 (MIM #113705) confer markedly increased risk of breast and ovarian cancer. The full-length transcript codifies for a protein involved in DNA repair pathways and cell-cycle checkpoints. Several BRCA1 splicing isoforms have been described in public domain databases, but the physiological role (if any) of BRCA1 alternative splicing remains to be established.

View Article and Find Full Text PDF

Background: Accurate evaluation of unclassified sequence variants in cancer predisposition genes is essential for clinical management and depends on a multifactorial analysis of clinical, genetic, pathologic, and bioinformatic variables and assays of transcript length and abundance. The integrity of assay data in turn relies on appropriate assay design, interpretation, and reporting.

Methods: We conducted a multicenter investigation to compare mRNA splicing assay protocols used by members of the ENIGMA (Evidence-Based Network for the Interpretation of Germline Mutant Alleles) consortium.

View Article and Find Full Text PDF

A rapid and easy method to screen for aberrant cDNA would be a very useful diagnostic tool in genetics since a fraction of the DNA variants found affect RNA splicing. The currently used RT-PCR methods require new primer combinations to study each variant that might affect splicing. Since MLPA is routinely used to detect large genomic deletions and successfully detected exon skipping events in Duchenne muscular dystrophy in cDNA, we performed a pilot study to evaluate its value for BRCA1 cDNA.

View Article and Find Full Text PDF

A subset of the unclassified variants (UVs) identified during genetic screening of BRCA1/2 genes may affect splicing. We assessed at RNA level the effect of four BRCA1 and ten BRCA2 UVs with a putative splice effect, as predicted in silico. The variants selected for this study were beyond the positions -1, -2 or +1, +2 from the exon, and were not previously described (n = 8) or their effect on splicing was not assessed previously (n = 6).

View Article and Find Full Text PDF

Kabuki Syndrome (KS) is a rare syndrome characterized by intellectual disability and multiple congenital abnormalities, in particular a distinct dysmorphic facial appearance. KS is caused by mutations in the MLL2 gene, encoding an H3K4 histone methyl transferase which acts as an epigenetic transcriptional activator during growth and development. Direct sequencing of all 54 exons of the MLL2 gene in 45 clinically well-defined KS patients identified 34 (75.

View Article and Find Full Text PDF

Holoprosencephaly is a severe malformation of the brain characterized by abnormal formation and separation of the developing central nervous system. The prevalence is 1:250 during early embryogenesis, the live-born prevalence is 1:16 000. The etiology of HPE is extremely heterogeneous and can be teratogenic or genetic.

View Article and Find Full Text PDF

Mutations in the methyl-CpG-binding protein 2 (MECP2) gene located on Xq28, cause Rett syndrome (RTT) in female patients. Meanwhile, nonmosaic MECP2 mutations unknown in girls have been found in an increasing number of male patients with a normal 46, XY karyotype. They can cause a broad spectrum of neurodevelopmental disorders which often show a combination of mental retardation (MR) with neurological symptoms.

View Article and Find Full Text PDF