Information encryption with optical technologies has become increasingly important due to remarkable multidimensional capabilities of light fields. However, the optical encryption protocols proposed to date have been primarily based on the first-order field characteristics, which are strongly affected by interference effects and make the systems become quite unstable during light-matter interaction. Here, we introduce an alternative optical encryption protocol whereby the information is encoded into the second-order spatial coherence distribution of a structured random light beam via a generalized van Cittert-Zernike theorem.
View Article and Find Full Text PDF