Publications by authors named "Demidyuk I"

Background: Protease S (PrtS) from Photorhabdus laumondii belongs to the group of protealysin-like proteases (PLPs), which are understudied factors thought to play a role in the interaction of bacteria with other organisms. Since P. laumondii is an insect pathogen and a nematode symbiont, the analysis of the biological functions of PLPs using the PrtS model provides novel data on diverse types of interactions between bacteria and hosts.

View Article and Find Full Text PDF

Background: Protease 3C (3Cpro) is the only protease encoded in the human hepatitis A virus genome and is considered as a potential target for antiviral drugs due to its critical role in the viral life cycle. Additionally, 3Cpro has been identified as a potent inducer of ferroptosis, a newly described type of cell death. Therefore, studying the molecular mechanism of 3Cpro functioning can provide new insights into viral-host interaction and the biological role of ferroptosis.

View Article and Find Full Text PDF

Entomopathogenic bacteria of the genus Photorhabdus secrete protease S (PrtS), which is considered a virulence factor. We found that in the Photorhabdus genomes, immediately after the prtS genes, there are genes that encode small hypothetical proteins homologous to emfourin, a recently discovered protein inhibitor of metalloproteases. The gene of emfourin-like inhibitor from Photorhabdus laumondii subsp.

View Article and Find Full Text PDF

The identification of tissue-specific promoters for gene therapeutic constructs is one of the aims of complex tumor therapy. The genes encoding the fibroblast activation protein () and the connective tissue growth factor () can function in tumor-associated stromal cells but are practically inactive in normal adult cells. Accordingly, the promoters of these genes can be used to develop vectors targeted to the tumor microenvironment.

View Article and Find Full Text PDF

Emfourin (M4in) is a protein metalloprotease inhibitor recently discovered in the bacterium Serratia proteamaculans and the prototype of a new family of protein protease inhibitors with an unknown mechanism of action. Protealysin-like proteases (PLPs) of the thermolysin family are natural targets of emfourin-like inhibitors widespread in bacteria and known in archaea. The available data indicate the involvement of PLPs in interbacterial interaction as well as bacterial interaction with other organisms and likely in pathogenesis.

View Article and Find Full Text PDF

synthesizes the intracellular metalloprotease protealysin. This work was aimed at searching for bacterial substrates of protealysin among the proteins responsible for replication and cell division. We have shown that protealysin unlimitedly cleaves the SOS response protein RecA.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19) which has extremely rapidly spread worldwide. In order to develop the effective antiviral therapies, it is required to understand the molecular mechanisms of the SARS-CoV-2 pathogenesis. The main protease, or 3C-like protease (3CLpro), plays the essential role in the coronavirus replication that makes the enzyme a promising therapeutic target.

View Article and Find Full Text PDF

The 3C protease is a key factor in picornavirus-induced pathologies with a comprehensive action on cell targets. However, the effects induced by the enzyme have not been described at the organismic level. Here, the model of developing Danio rerio embryos was used to analyze possible toxic effects of the 3C protease of human hepatitis A virus (3Cpro) at the whole-body level.

View Article and Find Full Text PDF

Regulated cell death (RCD) is a fundamental process common to nearly all living beings and essential for the development and tissue homeostasis in animals and humans. A wide range of molecules can induce RCD, including a number of viral proteolytic enzymes. To date, numerous data indicate that picornaviral 3C proteases can induce RCD.

View Article and Find Full Text PDF

Emfourin (M4in) from Serratia proteamaculans is a new proteinaceous inhibitor of protealysin-like proteases (PLPs), a subgroup of the well-known and widely represented metallopeptidase M4 family. Although the biological role of PLPs is debatable, data published indicate their involvement in pathogenesis, including bacterial invasion into eukaryotic cells, suppression of immune defense of some animals, and destruction of plant cell walls. Gene colocalization into a bicistronic operon observed for some PLPs and their inhibitors (as in the case of M4in) implies a mutually consistent functioning of both entities.

View Article and Find Full Text PDF

Protealysin is a Serratia proteamaculans metalloproteinase of the M4 peptidase family and the prototype of a large group of protealysin-like proteases (PLPs). PLPs are likely involved in bacterial interaction with plants and animals as well as in bacterial pathogenesis. We demonstrated that the PLP genes in bacteria colocalize with the genes of putative conserved proteins.

View Article and Find Full Text PDF

Protealysin is a thermolysin-like protease of Serratia proteamaculans capable of specifically cleaving actin, which correlates with the invasive activity of these bacteria. Here, we show that inactivation of the protealysin gene does not inhibit invasion but, in contrast, leads to a twofold increase in the S. proteamaculans invasive activity.

View Article and Find Full Text PDF

The functional efficiency of the expression cassettes integrated into a plasmid and a PCR- amplified fragment was comparatively analyzed after transient transfection in vitro or introduction into the developing embryo of Danio rerio. The cassettes contained the reporter genes, luciferase of Photinus pyralis (luc) or enhanced green fluorescent protein, under the control of the promoter of human cytomegalovirus immediate-early genes. In the in vitro system, the efficiency of the circular plasmid was 2.

View Article and Find Full Text PDF

In this study, we investigated the quorum sensing (QS) regulatory system of the psychrotrophic strain 94 isolated from spoiled refrigerated meat. The strain produced several -acyl--homoserine-lactone (AHL) QS signal molecules, with -(3-oxo-hexanoyl)--homoserine lactone and -(3-hydroxy-hexanoyl)--homoserine lactone as two main types. The and genes encoding an AHL synthase and a receptor regulatory protein, respectively, were cloned and sequenced.

View Article and Find Full Text PDF

Protealysin, a metalloprotease of Serratia proteamaculans, is the prototype of a subgroup of the M4 peptidase family. Protealysin-like proteases (PLPs) are widely spread in bacteria but also occur in fungi and certain archaea. The interest in PLPs is primarily due to their putative involvement in the bacterial pathogenesis in animals and plants.

View Article and Find Full Text PDF

Background: Protealysin, a zinc metalloprotease of Serratia proteamaculans, is the prototype of a new group within the peptidase family M4. Protealysin-like proteases (PLPs) are widely spread in bacteria but are also found in fungi and archaea. The biological functions of PLPs have not been well studied, but published data showed the involvement of enzymes of this group in the interaction of bacteria with higher organisms, and most likely in the pathogenesis.

View Article and Find Full Text PDF

The luxS gene is responsible for the synthesis of AI-2 (autoinducer-2), a signaling molecule that participates in quorum sensing regulation in a large number of bacteria. In this work, we investigated which phenotypes are regulated by luxS gene in Serratia proteamaculans 94, psychrotrophic strain isolated from spoiled refrigerated meat. AI-2 was identified in S.

View Article and Find Full Text PDF

Carbohydrate-binding modules of the family 54 (CBM54) are characterized by spontaneous rupture of the peptide bond Asn266-Ser267 (numbering corresponds to that of laminarinase Lic16A of Ruminiclostridium thermocellum). As a result of processing, two parts are formed noncovalently connected to each other. Here, to gain insights into the functional significance of the internal cleavage, we made modifications of the family-conserved processing site in CBM54 of Lic16A.

View Article and Find Full Text PDF

Development and implementation of adequate organism-level models is one of the key elements in biomedical research that focuses on experimental oncology. Over the last decade, studies using Zebrafish () have gained in popularity in this area of research. This review describes the various approaches that have been used in developing highly effective models for oncological (clinical term, better cancer or tumor) studies based on .

View Article and Find Full Text PDF

Studies of the molecular mechanisms of esophageal cancer development have to be carried out on sufficient amount of tumor material, obtained under conditions of controlled exposure to carcinogenic factors. Esophageal cancer models on laboratory animals serve an indispensable source of this material. One of these models is esophageal cancer induction in rats by N-nitroso compound precursors.

View Article and Find Full Text PDF

Optimal catalytic activity of endoglucanase Cel5D from the thermophilic anaerobic bacterium Caldicellulosiruptor bescii requires the presence of a carbohydrate-binding module of family 28, CbCBM28. The binding properties of CbСВМ28 with cello-, laminari-, xylo- and chito-oligosaccharides were studied by isothermal titration calorimetry. CbСВМ28 bound only cello-oligosaccharides comprising at least four glucose residues with binding constants of 2.

View Article and Find Full Text PDF

Glutamyl endopeptidases (GEPases) are chymotrypsin-like enzymes that preferentially cleave the peptide bonds of the α-carboxyl groups of glutamic acid. Despite the many years of research, the structural determinants underlying the strong substrate specificity of GEPases still remain unclear. In this review, data concerning the molecular mechanisms that determine the substrate preference of GEPases is generalized.

View Article and Find Full Text PDF

Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years.

View Article and Find Full Text PDF