Background: Long-chain polyunsaturated fatty acids (LC-PUFAs), such as docosahexaenoic acid (DHA), are essential for human health and have been widely used in the food and pharmaceutical industries. However, the limited availability of natural sources, such as oily fish, has led to the pursuit of microbial production as a promising alternative. Yarrowia lipolytica can produce various PUFAs via genetic modification.
View Article and Find Full Text PDFDHA is a marine PUFA of commercial value, given its multiple health benefits. The worldwide emerging shortage in DHA supply has increased interest in microbial cell factories that can provide the compound de novo. In this regard, the present work aimed to improve DHA production in the oleaginous yeast strain Y.
View Article and Find Full Text PDFPolyunsaturated fatty acids (PUFAs), primarily docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have received worldwide attention in recent years due to an increasing awareness of their uniqueness in improving diet and human health and their apparently inevitable shortage in global availability. Microbial cell factories are a major solution to supplying these precious molecules in sufficient amounts and providing PUFA-rich aquafeed, superfoods, and medical formulations. This review assesses the PUFA world markets and highlights recent advances in upgrading and streamlining microalgae, yeasts, fungi, and bacteria for high-level PUFA production and broadening of the PUFA spectrum.
View Article and Find Full Text PDFLong-chain polyunsaturated fatty acids (LC-PUFAs), particularly the omega-3 LC-PUFAs eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA), have been associated with beneficial health effects. Consequently, sustainable sources have to be developed to meet the increasing demand for these PUFAs. Here, we demonstrate the design and construction of artificial PUFA biosynthetic gene clusters (BGCs) encoding polyketide synthase-like PUFA synthases from myxobacteria adapted for the oleaginous yeast Yarrowia lipolytica.
View Article and Find Full Text PDFEctoine is formed in various bacteria as cell protectant against all kinds of stress. Its preservative and protective effects have enabled various applications in medicine, cosmetics, and biotechnology, and ectoine therefore has high commercial value. Industrially, ectoine is produced in a complex high-salt process, which imposes constraints on the costs, design, and durability of the fermentation system.
View Article and Find Full Text PDF