Significant progress has been made in developing fluorine-free firefighting foams (F3) as alternatives to perfluoroalkyl substances (PFAS)-containing aqueous film-forming foams (AFFF) to help eliminate the health and environmental concerns linked to PFAS exposure. However, developing viable F3 options hinges on a thorough assessment of potential risks alongside the technical performance evaluations. This study showcases the capability of a zebrafish-based platform to discern the developmental and behavioral toxicities associated with exposure to one AFFF and two F3 formulations.
View Article and Find Full Text PDFBehavioral assays using early-developing zebrafish (Danio rerio) offer a valuable supplement to the in vitro battery adopted as new approach methodologies (NAMs) for assessing risk of chemical-induced developmental neurotoxicity. However, the behavioral assays primarily adopted rely on visual stimulation to elicit behavioral responses, known as visual motor response (VMR) assays. Ocular deficits resulting from chemical exposures can, therefore, confound the behavioral responses, independent of effects on the nervous system.
View Article and Find Full Text PDFArsenic (As) is globally detected in drinking water and food products at levels repeatedly surpassing regulatory thresholds. Several neurological and mental health risks linked to arsenic exposure are proposed; however, the nature of these effects and their association with the chemical forms of arsenic are not fully understood. Gaining a clear understanding of the etiologies and characteristics of these effects is crucial, particularly in association with developmental exposures where the nervous system is most vulnerable.
View Article and Find Full Text PDF