Publications by authors named "Demetrius M Kokkinakis"

This chapter reviews how total methionine (MET) restriction (MR) of a human brain tumor xenograft, effected by the combination of recombinant L-methionine-α-deamino-γ-lyase (rMETase) and a MET-free diet, greatly potentiates standard chemotherapy for brain tumors in mouse models. The growth of human brain tumor Daoy, SWB77, and D-54 xenografts in nude mice was arrested after the depletion of mouse plasma methionine (MET) with a combination of an MR diet and rMETase and homocysteine to rescue normal cells and tissues. MET was depleted to below 5 μm by this treatment.

View Article and Find Full Text PDF

Methionine deprivation stress (MDS) eliminates mitotic activity in melanoma cells regardless of stage, grade, or TP53 status, whereas it has a negligible effect on normal skin fibroblasts. In most cases, apoptosis accounts for the elimination of up to 90% of tumor cells from the culture within 72 hours after MDS, leaving a scattered population of multinucleated resistant cells. Loss of mitosis in tumor cells is associated with marked reduction of cyclin-dependent kinase (CDK) 1 transcription and/or loss of its active form (CDK1-P-Thr(161)), which is coincident with up-regulation of CDKN1A, CDKN1B, and CDKN1C (p21, p27, and p57).

View Article and Find Full Text PDF

Wnt/beta-catenin signaling plays an important role in normal development. However, its aberrant activation is associated with several cancers. The aim of this study is to examine the Wnt/beta-catenin pathway in patients with advanced pancreatic adenocarcinoma (n = 31).

View Article and Find Full Text PDF

Malignant cells fail to utilize homocysteine (HCYS) in place of methionine (MET) and they are dependent on exogenous MET for growth. In animals, reduction of plasma MET to <5 microM can be induced by combined dietary restriction of MET and administration of L-methionine-alpha-deamino-gamma-lyase (methioninase). This treatment, termed as MET-stress, inhibits the growth of brain tumor xenografts in athymic mice and enhances the efficacy of DNA alkylating chemotherapeutic agents.

View Article and Find Full Text PDF

The effect of methionine deprivation (methionine stress) on the proliferation, survival, resistance to chemotherapy, and regulation of gene and protein expression in pancreatic tumor lines is examined. Methionine stress prevents successful mitosis and promotes cell cycle arrest and accumulation of cells with multiple micronuclei with decondensed chromatin. Inhibition of mitosis correlates with CDK1 down-regulation and/or inhibition of its function by Tyr(15) phosphorylation or Thr(161) dephosphorylation.

View Article and Find Full Text PDF

Glial progenitors from the brain of normal adult Sprague-Dawley rats were compared to their initiated and malignant counterparts that were isolated from apparently normal brains of animals exposed to methylnitrosourea (MNU). Fibroblast growth factor-2 (FGF-2) or platelet-derived growth factor (PDGF)-A or -B induced differentiation of normal progenitors to a pro-astrocytic or oligodendrocytic morphology, respectively, whereas the combination of these factors resulted in their terminal differentiation to oligodendrocytes and senescence. In contrast, initiated progenitors did not exit the cell cycle when stimulated with PDGF and/or FGF-2.

View Article and Find Full Text PDF

Methionine deprivation imposes a metabolic stress, termed methionine stress, that inhibits mitosis and induces cell cycle arrest and apoptosis. The methionine-dependent central nervous system tumor cell lines DAOY (medulloblastoma), SWB61 (anaplastic oligodendroglioma), SWB40 (anaplastic astrocytoma), and SWB39 (glioblastoma multiforme) were compared with methionine-stress resistant SWB77 (glioblastoma multiforme). The cDNA-oligoarray analysis and reverse transcription-PCR verification indicated common changes in gene expression in methionine-dependent cell lines to include up-regulation/induction of cyclin D1, mitotic arrest deficient (MAD)1, p21, growth arrest and DNA-damage-inducible (GADD)45 alpha, GADD45 gamma, GADD34, breast cancer (BRCA)1, 14-3-3sigma, B-cell CLL/lymphoma (BCL)1, transforming growth factor (TGF)-beta, TGF-beta-induced early response (TIEG), SMAD5, SMAD7, SMAD2, insulin-like growth factor binding protein (IGFBP7), IGF-R2, vascular endothelial growth factor (VEGF), TNF-related apoptosis-inducing ligand (TRAIL), TNF-alpha converting enzyme (TACE), TRAIL receptor (TRAIL-R)2, TNFR-related death receptor (DR)6, TRAF interacting protein (I-TRAF), IL-6, MDA7, IL-1B convertase (ICE)-gamma, delta and epsilon, IRF1, IRF5, IRF7, interferon (IFN)-gamma and receptor components, ISG15, p65-NF-kappaB, JUN-B, positive cofactor (PC)4, C/ERB-beta, inositol triphosphate receptor I, and methionine adenosyltransferase II.

View Article and Find Full Text PDF

The purpose of the study was to determine the dose of O(6)-benzylguanine (BG) that would suppress O(6)-alkylguanine-DNA alkyltransferase (AGT) activity to undetectable levels in > 90% of anaplastic gliomas, as measured 6 h after a 1-h BG infusion. Subjects who were scheduled for surgical resection of a known or presumed anaplastic glioma received a 1-h infusion of BG. Tumor tissue was surgically removed approximately 6 h after the end of the infusion and was analyzed for AGT activity.

View Article and Find Full Text PDF

Adenocarcinoma of the pancreas is refractory to chemotherapeutic agents, including BCNU and streptozotocin. We have previously shown that drugs, which adduct the O(6)- position of guanine, are ineffective against pancreatic tumor cell lines because of high expression of O(6)-methylguanine-DNA methyltransferase (MGMT). The effect of MGMT inactivation on the resistance of pancreatic tumors to carmustine (BCNU) and to temozolomide (TMZ) was examined in five human pancreatic tumor xenografts in athymic mice.

View Article and Find Full Text PDF

We have shown previously that allyl isothiocyanate (AITC), a constituent of cruciferous vegetables, significantly inhibits survival of PC-3 and LNCaP human prostate cancer cells in culture, whereas proliferation of a normal prostate epithelial cell line is minimally affected by AITC even at concentrations that are highly cytotoxic to the prostate cancer cells. The present studies were designed to test the hypothesis that AITC administration may retard growth of human prostate cancer xenografts in vivo. Bolus i.

View Article and Find Full Text PDF

Chronic methionine (MET) stress, defined as depletion of plasma MET to levels below 5 microM, can be induced in animals with withdrawal of dietary MET, homocysteine (HCYS), and choline (CHOL) plus periodic administration of recombinant L-methionine-alpha-deamino-gamma-lyase (rMETase) and rescue homocystine (HCYSS), given i.p. every 8 and 24 h, respectively.

View Article and Find Full Text PDF

Purpose And Experimental Design: The contributions of O6-methylguanine-DNA-methyltransferase(MGMT), p53 status, mismatch repair, and apoptotic response to the resistance of glial tumors to temozolomide (TMZ) were tested using seven established human glial tumor cell lines in culture and xenografts in athymic mice.

Results: Resistance to TMZ was only marginally dependent on MGMT activity, because subtoxic doses of TMZ easily eliminated MGMT reserves for at least 18 h after treatment. Resistance to TMZ varied most notably with the p53 status of the tumor.

View Article and Find Full Text PDF