Top-down approaches for quantification of proteins based on separation and mass spectrometric assays hold promise due to their high specificity and avoidance of both proteolytic steps and need for generation of monoclonal antibodies. In this study, a 2DLC-UV/MS assay was developed for the simultaneous quantification of two intact soybean allergens, hydrophobic protein from soybean (HPS) and Gly m 4. Both of these allergens were purified from soybean seeds followed by complete characterization.
View Article and Find Full Text PDFSoybean (Glycine max) is considered a major allergenic food. Gly m 4 is one of several soybean allergens that has been identified to cause an allergic reaction, typically the symptoms are localized effects including the skin, gastrointestinal tract, or respiratory tract. Soybean allergens are considered a complete food allergen in that they are capable of inducing specific IgE as well as eliciting a range of severity from mild rashes up to anaphylaxis.
View Article and Find Full Text PDFMaize (Zea mays) is not considered a major allergenic food; however, when food induced allergenic and immunologic reactions have been implicated to maize, lipid transfer proteins (LTPs) have been identified as major allergens. LTP is an extremely stable protein that is resistant to both proteolytic attack and food processing, which permits the allergen to reach the gastrointestinal immune system in an immunogenic and allergenic conformation, allowing sensitization and induction of systemic symptoms. They are considered a complete food allergen in that they are capable of inducing specific IgE as well as eliciting severe symptoms.
View Article and Find Full Text PDFBackground: The hypocholesterolemic and hypoglycemic effects of various natural and semisynthetic dietary fibers have been studied for their potential use in the prevention and improvement of metabolic syndrome. Of these dietary fibers, hydroxypropyl methylcellulose (HPMC) has been shown to lower plasma cholesterol and reduce weight gain. However, the underlying mechanisms are not known.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
October 2008
The determination of C-terminal peptide sequence is critical since the C-terminal peptide contains biologically relevant information and often undergoes post-translational processing. Another important application is in estimating purity of the biopharmaceuticals, especially for determining the presence of ragged processed ends and for N-terminally blocked polypeptides and proteins. In this paper, different isotope coding strategies in combination with reversed phase chromatography (RPC) coupled with electrospray ionization-mass spectrometry (ESI-MS) were evaluated to detect the C-terminal peptide from proteolytic digests.
View Article and Find Full Text PDF