Publications by authors named "Demetrio Sierra-Mercado"

The tobacco cembranoid known as (1S,2E,4R,6R,7E,11E)-2,7,11-cembratriene-4,6-diol (4R) has been shown to offer neuroprotection against conditions such as brain ischemia, systemic inflammation, Parkinson's disease, and organophosphate toxicity in rodents. Previous safety studies conducted on male and female Sprague Dawley rats revealed no significant side effects following a single injection of 4R at varying concentrations (6, 24, or 98 mg/kg of body weight). This study aimed to assess the potential of 4R for clinical trials in neurotherapy in male nonhuman primates.

View Article and Find Full Text PDF

The capacity of next-generation closed-loop or adaptive deep brain stimulation devices (aDBS) to read (measure neural activity) and write (stimulate brain regions or circuits) shows great potential to effectively manage movement, seizure, and psychiatric disorders, and also raises the possibility of using aDBS to electively (non-therapeutically) modulate mood, cognition, and prosociality. What separates aDBS from most neurotechnologies (e.g.

View Article and Find Full Text PDF

The literature on deep brain stimulation (DBS) and adaptive DBS (aDBS) raises concerns that these technologies may affect personality, mood, and behavior. We conducted semi-structured interviews with researchers ( = 23) involved in developing next-generation DBS systems, exploring their perspectives on ethics and policy topics including whether DBS/aDBS can cause such changes. The majority of researchers reported being aware of personality, mood, or behavioral (PMB) changes in recipients of DBS/aDBS.

View Article and Find Full Text PDF

This research study provides patient and caregiver perspectives as to whether or not to undergo adaptive deep brain stimulation (aDBS) research. A total of 51 interviews were conducted in a multi-site study including patients undergoing aDBS and their respective caregivers along with persons declining aDBS. Reasons highlighted for undergoing aDBS included hopes for symptom alleviation, declining quality of life, desirability of being in research, and altruism.

View Article and Find Full Text PDF

The expansion of research on deep brain stimulation (DBS) and adaptive DBS (aDBS) raises important neuroethics and policy questions related to data sharing. However, there has been little empirical research on the perspectives of experts developing these technologies. We conducted semi-structured, open-ended interviews with aDBS researchers regarding their data sharing practices and their perspectives on ethical and policy issues related to sharing.

View Article and Find Full Text PDF

Interest and investment in closed-loop or adaptive deep brain stimulation (aDBS) systems have quickly expanded due to this neurotechnology's potential to more safely and effectively treat refractory movement and psychiatric disorders compared to conventional DBS. A large neuroethics literature outlines potential ethical concerns about conventional DBS and aDBS systems. Few studies, however, have examined stakeholder perspectives about ethical issues in aDBS research and other next-generation DBS devices.

View Article and Find Full Text PDF

The development of implanted neural devices to manage neurological and psychiatric disorders or to restore loss of physiological function is a rapidly advancing area of neuroscience research. We consider whether investigators of brain implant studies have an obligation to facilitate device explantation for participants who request it at study conclusion.

View Article and Find Full Text PDF

This article reviews neuroethics issues that arise with the development, translation, and use of technologies for neuromodulation. Three electronic databases (PubMed, Embase, and PhilPapers) were searched for relevant articles published between 1/1/16 - 6/26/18. We focus on pressing ethical issues related to the use of deep brain stimulation (DBS), adaptive DBS (aDBS), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and associated technologies.

View Article and Find Full Text PDF

The repeated administration of amphetamine can lead to locomotor sensitization. Although the repeated administration of amphetamine has been associated with anxiety and impaired working memory, it is uncertain if expression of amphetamine sensitization is associated with modifications of emotional memories. To address this issue, rats were injected once daily with amphetamine for five consecutive days (1.

View Article and Find Full Text PDF

Unlabelled: The precise neural mechanisms underlying transitions between consciousness and anesthetic-induced unconsciousness remain unclear. Here, we studied intracortical neuronal dynamics leading to propofol-induced unconsciousness by recording single-neuron activity and local field potentials directly in the functionally interconnecting somatosensory (S1) and frontal ventral premotor (PMv) network during a gradual behavioral transition from full alertness to loss of consciousness (LOC) and on through a deeper anesthetic level. Macaque monkeys were trained for a behavioral task designed to determine the trial-by-trial alertness and neuronal response to tactile and auditory stimulation.

View Article and Find Full Text PDF

Post-traumatic stress disorder (PTSD) is characterized in part by impaired extinction of conditioned fear. Traumatic brain injury (TBI) is thought to be a risk factor for development of PTSD. We tested the hypothesis that controlled cortical impact (CCI) would impair extinction of fear learned by Pavlovian conditioning, in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Both animals and humans make decisions based on the chance of getting rewards or facing punishments.
  • The Avoidance-Reward Conflict (ARC) Task helps us understand how rewards and punishments affect these decisions in both species.
  • The study showed that both non-human primates (like monkeys) and humans tend to avoid smaller rewards when there's a high chance of punishment, suggesting that animal behavior can tell us a lot about how humans think.
View Article and Find Full Text PDF

The prefrontal cortex (PFC) regulates emotional responses, but it is unclear how PFC integrates diverse inputs to select the appropriate response. We therefore evaluated the contribution of basolateral amygdala (BLA) and ventral hippocampus (vHPC) inputs to fear signaling in the prelimbic (PL) cortex, a PFC region critical for the expression of conditioned fear. In conditioned rats trained to press for food, BLA inactivation decreased the activity of projection cells in PL, and reduced PL conditioned tone responses.

View Article and Find Full Text PDF

Current models of conditioned fear expression and extinction involve the basolateral amygdala (BLA), ventral medial prefrontal cortex (vmPFC), and the hippocampus (HPC). There is some disagreement with respect to the specific roles of these structures, perhaps due to subregional differences within each area. For example, growing evidence suggests that infralimbic (IL) and prelimbic (PL) subregions of vmPFC have opposite influences on fear expression.

View Article and Find Full Text PDF

Aging is associated with a decreased capacity for dentate gyrus (DG) granule cell depolarization as well as reduced perforant path activation. Although it is well established that the maintenance of DG long-term potentiation (LTP) over days is impaired in aged, as compared to young animals, the threshold for inducing this LTP has never been investigated in aged, awake animals. In addition, although exposure to novelty prior to theta-burst stimulation (TBS) increases both the induction and longevity of DG LTP in adult rats, the effects of exposure to novelty on LTP in aged rats have never been investigated.

View Article and Find Full Text PDF

In a previous study, our laboratory reported that sildenafil citrate, a cyclic nucleotide phosphodiesterase type 5 inhibitor, reversed a learning impairment in rats induced by systemic inhibition of nitric oxide synthase (60 mg/kg, i.p., Nomega-nitro-L-arginine methyl ester; L-NAME).

View Article and Find Full Text PDF

Anxiety disorders are thought to reflect deficits in the regulation of fear expression. Evidence from rodent studies implicates the ventromedial prefrontal cortex (vmPFC) in the regulation of conditioned fear. Lesions of the vmPFC have had differing effects on the acquisition and expression of conditioned fear, as well as on recall of extinction.

View Article and Find Full Text PDF

Rationale: The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signal transduction pathway has been implicated in some forms of learning and memory. Recent findings suggest that inhibition of phosphodiesterase (PDE) enzymes that degrade cGMP may have memory-enhancing effects.

Objectives: We examined whether treatment with sildenafil citrate, a PDE type 5 inhibitor, would attenuate a learning impairment induced by inhibition of NO synthase [60 mg/kg N(omega)-nitro-L-arginine methyl ester (L-NAME), i.

View Article and Find Full Text PDF

We examined whether treatment with sildenafil citrate (the active compound of Viagra), a cyclic nucleotide phosphodiesterase type 5 inhibitor (PDE5), would reverse the learning impairment induced by cholinergic muscarinic (mACh) receptor blockade [0.75 mg/kg scopolamine HCl, intraperitoneal (i.p.

View Article and Find Full Text PDF